A new intelligent scheme for power system faults detection and classification: A hybrid technique
Author:
Affiliation:
1. Department of Electrical & Electronics EngineeringMalla Reddy Engineering College for Women Hyderabad India
2. Department of Electrical EngineeringAnnasaheb Dange College of Engineering and Technology Ashta India
Publisher
Wiley
Subject
Electrical and Electronic Engineering,Computer Science Applications,Modelling and Simulation
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jnm.2728
Reference43 articles.
1. Power quality disturbance classification using Hilbert transform and RBF networks
2. Detection and Classification of Power Quality Disturbances Using S-Transform and Probabilistic Neural Network
3. Detection and classification of power quality disturbances based on time–frequency‐scale transform
4. A new algorithm for automatic classification of power quality events based on wavelet transform and SVM
5. Power Quality Disturbance Classification Using the S-Transform and Probabilistic Neural Network
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Artificial Intelligence-Enabled Predictive Maintenance for the Resilient Manufacturing: Current Applications and Challenges;Lecture Notes on Multidisciplinary Industrial Engineering;2024
2. Single fuzzy inference based fault detection and classification protection scheme for different types of short circuit faults on double circuit transmission lines;International Journal of Modelling and Simulation;2023-03-29
3. Application of machine learning methods in fault detection and classification of power transmission lines: a survey;Artificial Intelligence Review;2022-11-13
4. Heterogeneous learning method of ensemble classifiers for identification and classification of power quality events and fault transients in wind power integrated microgrid;Sustainable Energy, Grids and Networks;2022-09
5. A single-end fault identification system for transmission lines connected with DFSC;Multiscale and Multidisciplinary Modeling, Experiments and Design;2022-03-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3