Reduced basis method for managed pressure drilling based on a model with local nonlinearities

Author:

Abbasi Mohammad Hossein1ORCID,Iapichino Laura1,Naderi Lordejani Sajad2,Schilders Wil1,Wouw Nathan23

Affiliation:

1. Center for Analysis, Scientific computing and Applications, Department of Mathematics and Computer Science Eindhoven University of Technology Eindhoven The Netherlands

2. Dynamics and Control Group, Department of Mechanical Engineering Eindhoven University of Technology Eindhoven The Netherlands

3. Department of Civil, Environmental and Geo‐Engineering University of Minnesota Minneapolis Minnesota USA

Publisher

Wiley

Subject

Applied Mathematics,General Engineering,Numerical Analysis

Reference25 articles.

1. Model order reduction for managed pressure drilling systems based on a model with local nonlinearities;Naderi Lordejani S;IFAC‐PapersOnLine,2018

2. Modeling and numerical implementation of managed pressure drilling systems for evaluating pressure control systems;Naderi Lordejani S;SPE Drilling Completion,2020

3. AarsnesUJF. Modeling of Two‐Phase Flow for Estimation and Control of Drilling Operations (PhD thesis). NTNU;2016.

4. Approximation of Large-Scale Dynamical Systems

5. Certified Reduced Basis Methods for Parametrized Partial Differential Equations

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model complexity reduction and controller design for managed pressure drilling automation;Journal of Process Control;2023-02

2. Advances in Well Control: Early Kick Detection and Automated Control Systems;Drilling Engineering and Technology - Recent Advances New Perspectives and Applications;2022-11-23

3. Research on calculation model of bottom of the well pressure based on machine learning;Future Generation Computer Systems;2021-11

4. Special Issue on Credible High‐Fidelity and Low‐Cost Simulations in Computational Engineering;International Journal for Numerical Methods in Engineering;2020-10-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3