Historical fragmentation and stepping‐stone gene flow led to population genetic differentiation in a coastal seabird

Author:

Harkness Bronwyn A. S.1,Ibarguchi Gabriela1,Poland Veronica F.1,Friesen Vicki L.1ORCID

Affiliation:

1. Department of Biology Queen's University Kingston Ontario Canada

Abstract

AbstractUnderstanding the forces that shape population genetic structure is fundamental both for understanding evolutionary trajectories and for conservation. Many factors can influence the geographic distribution of genetic variation, and the extent to which local populations differ can be especially difficult to predict in highly mobile organisms. For example, many species of seabirds are essentially panmictic, but some show strong structure. Pigeon Guillemots (Cepphus columba; Charadriiformes: Alcidae) breed in small colonies scattered along the North Pacific coastline and feed in shallow nearshore waters year‐round. Given their distribution, gene flow is potentially lower and population genetic structure is stronger than in most other high‐latitude Northern Hemisphere seabirds. We screened variation in the mitochondrial control region, four microsatellite loci, and two nuclear introns in 202 Pigeon Guillemots representing three of five subspecies. Mitochondrial sequences and nuclear loci both showed significant population differences, although structure was weaker for the nuclear loci. Genetic differentiation was correlated with geographic distance between sampling locations for both the mitochondrial and nuclear loci. Mitochondrial gene trees and demographic modeling both provided strong evidence for two refugial populations during the Pleistocene glaciations: one in the Aleutian Islands and one farther east and south. We conclude that historical fragmentation combined with a stepping‐stone model of gene flow led to the relatively strong population differentiation in Pigeon Guillemots compared to other high‐latitude Northern Hemisphere seabird species. Our study adds to growing evidence that Pleistocene glaciation events affected population genetic structure not only in terrestrial species but also in coastal marine animals.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Reference96 articles.

1. Predominance of Unbalanced Gene Flow from Western to Central North Pacific Colonies of the Black-Footed Albatross (Phoebastria nigripes)

2. The control of the false discovery rate in multiple testing under dependency

3. Genetic differentiation of the Kittlitz's Murrelet Brachyramphus brevirostris in the Aleutian Islands and Gulf of Alaska;Birt T. P.;Marine Ornithology,2011

4. Mitochondrial DNA polymorphism reveals hidden heterogeneity within some Asian populations;Chakraborty R.;American Journal of Human Genetics,1990

5. TCS: a computer program to estimate gene genealogies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3