Estimating distribution and abundance of wide‐ranging species with integrated spatial models: Opportunities revealed by the first wolf assessment in south‐central Italy

Author:

Gervasi Vincenzo12ORCID,Aragno Paola1,Salvatori Valeria3,Caniglia Romolo4,De Angelis Daniele12,Fabbri Elena4,La Morgia Valentina1ORCID,Marucco Francesca5,Velli Edoardo4,Genovesi Piero1

Affiliation:

1. Istituto Superiore per la Protezione e la Ricerca Ambientale Roma Italy

2. Federparchi—Italian Federation of Parks and Natural Reserves Roma Italy

3. Istituto di Ecologia Applicata Roma Italy

4. Department for the Monitoring and Protection of the Environment and for Biodiversity Conservation, Unit for Conservation Genetics (BIO‐CGE) Istituto Superiore per la Protezione e la Ricerca Ambientale Ozzano dell'Emilia Italy

5. Department of Life Sciences and Systems Biology University of Torino Torino Italy

Abstract

AbstractEstimating demographic parameters for wide‐ranging and elusive species living at low density is challenging, especially at the scale of an entire country. To produce wolf distribution and abundance estimates for the whole south‐central portion of the Italian wolf population, we developed an integrated spatial model, based on the data collected during a 7‐month sampling campaign in 2020–2021. Data collection comprised an extensive survey of wolf presence signs, and an intensive survey in 13 sampling areas, aimed at collecting non‐invasive genetic samples (NGS). The model comprised (i) a single‐season, multiple data‐source, multi‐event occupancy model and (ii) a spatially explicit capture‐recapture model. The information about species' absence was used to inform local density estimates. We also performed a simulation‐based assessment, to estimate the best conditions for optimizing sub‐sampling and population modelling in the future. The integrated spatial model estimated that 74.2% of the study area in south‐central Italy (95% CIs = 70.5% to 77.9%) was occupied by wolves, for a total extent of the wolf distribution of 108,534 km2 (95% CIs = 103,200 to 114,000). The estimate of total population size for the Apennine wolf population was of 2557 individuals (SD = 171.5; 95% CIs = 2127 to 2844). Simulations suggested that the integrated spatial model was associated with an average tendency to slightly underestimate population size. Also, the main contribution of the integrated approach was to increase precision in the abundance estimates, whereas it did not affect accuracy significantly. In the future, the area subject to NGS should be increased to at least 30%, while at least a similar proportion should be sampled for presence‐absence data, to further improve the accuracy of population size estimates and avoid the risk of underestimation. This approach could be applied to other wide‐ranging species and in other geographical areas, but specific a priori evaluations of model requirements and expected performance should be made.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3