A novel applied climate classification method for assessing atmospheric influence on anomalous coastal water levels

Author:

Lee Cameron C.1ORCID,Sheridan Scott C.1,Pirhalla Douglas E.2,Ransibrahmanakul Varis2,Dusek Gregory2

Affiliation:

1. ClimRISE Laboratory, Department of Geography Kent State University Kent Ohio USA

2. National Oceanic and Atmospheric Administration Washington, DC USA

Abstract

AbstractClimate classification is a commonly used tool to simplify, visualize and make sense of an otherwise unwieldy amount of climate data in applied climate science research. Typically, these classifications have stemmed from one of two perspectives, either a circulation‐to‐environment (C2E) approach, or an environment‐to‐circulation approach (E2C), each with advantages and drawbacks. This research discusses a novel environment‐to‐circulation‐to‐environment (ECE) perspective to applied climate classification, and develops a specific ECE methodology that utilizes canonical correlation and discriminant analysis—the CANDECE method. The benefits of the ECE approach generally, and the CANDECE methodology specifically, are demonstrated in applying climate classification to aid in modelling anomalous water levels (AWLs) along portions of the East and West coasts of the United States. Results show that the CANDECE method performs better than two traditional classification methods (k‐means and self‐organizing maps [SOMs]) at relating AWLs to their broad‐scale atmospheric setups, especially with regard to both high and low extreme AWLs. It is further demonstrated that, compared with the West coast, the CANDECE method is particularly advantageous along the southeastern US coast, where the primary modes of atmospheric variability (which drive the classifications produced by SOMs and k‐means) do not align with the relevant circulation‐based factors driving AWL variability. While AWLs were utilized for demonstrating the ECE proof‐of‐concept herein, ECE and CANDECE are designed to be useful for any climate application.

Funder

National Oceanic and Atmospheric Administration

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The influence of air masses on human mortality in the contiguous United States;International Journal of Biometeorology;2024-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3