Theoretical investigation on the reaction mechanisms of O2‐initiated gas‐phase oxidation of lignin model compounds

Author:

Dong Shuqi1,Zhang Hui1ORCID,Du Xia1,Yao Tingyu1,Shang Yan1,Jing Liquan2,Hu Jinguang2

Affiliation:

1. School of Material Science and Chemical Engineering Harbin University of Science and Technology Harbin China

2. Department of Chemical and Petroleum Engineering University of Calgary Calgary Alberta Canada

Abstract

AbstractTransforming renewable lignin into high value‐added chemicals is a forward‐looking strategy to address the resource waste caused by insufficient utilization of biomass resources. On this basis, studying the efficient conversion of lignin to aldehydes/acids and their reaction mechanisms has become an attractive topic. A systematic investigation of the gas‐phase oxidation reaction mechanisms of the three model compounds initiated by O2 was carried out at the atomic and molecular levels by using density functional theory (DFT). Further revealing of oxidation behavior on two reaction sites of phenolic hydroxyl group and hydroxymethyl group were accomplished in detail. The potential energy surface information of 21 possible reaction channels of two pathways were obtained at B3LYP/6‐311+G(d,p) level. The influence of substituent effects on the reaction energy barrier was estimated. The calculation results showed that the reactivity of phenolic hydroxyl group is stronger than that of hydroxymethyl group, because the reaction Gibbs potential barriers are lower by about 4.9–8.7 kcal/mol. The reaction energy barriers on phenolic hydroxyl group site and hydroxymethyl group site decrease with the increase of the number of methoxy groups. Revealing the oxidation processes of lignin model compounds will provide a deeper understanding on the reaction mechanism and provide theoretical support for further experimental research on the conversion of lignin into high value‐added chemicals.

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3