Reinforcement‐material effects on the compression behavior of polymer composites

Author:

Jain Akash1ORCID,Upadhyay Saloni1,Sahai Ankit1ORCID,Sharma Rahul Swarup1

Affiliation:

1. 3D Printing and Additive Manufacturing Lab, Department of Mechanical Engineering Dayalbagh Educational Institute Agra India

Abstract

AbstractAdditive manufacturing technique fused filament fabrication (FFF) has found widespread usage in a variety of sectors, because of its ability to produce parts with arbitrary geometries and intricate internal structures. This study focuses on the characterization of polylactic acid (PLA) and polyethylene terephthalate glycol (PETG) composites under compressive force to learn more about how various nozzle diameter (ND) and infill pattern (IP) affect the fabricated specimens. The specimens are created with various combination of IPs (triangular, honeycomb, and rectilinear) and NDs (0.2, 0.4, and 0.6 mm) utilizing three polymer composites namely carbon fiber filled PLA (CF‐PLA), carbon fiber filled PETG (CF‐PETG), and multi walled carbon nano tubes filled PLA (MWCNTs‐PLA). According to the findings, the higher ND improves the compressive properties of the polymer composites. The IP also has significant impact on the compressive properties of the fabricated specimens. The overall minimum compressive strength of 14.612 MPa at ND 0.2 mm and honeycomb IP for CF‐PLA specimen. The overall maximum compressive strength achieved is 45.269 MPa at ND 0.6 mm and rectilinear IP for MWCNTs‐PLA specimen. Therefore, the compressive strength is enhanced by 209.81% by modifying the process parameters and filament material. Based on statistical analysis using Taguchi method, the ND contributes highest, 79.61% to compressive strength of MWCNTs‐PLA specimens, but for CF‐PLA and CF‐PETG specimens, IP contributes highest, 52.65% and 57.91%, respectively. The aforementioned findings will be extremely useful to scientists attempting to achieve sustainability through the use of polymer composites and FFF process.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3