A Biogeochemical Study of Greenhouse Gas Formation From Two Ice Complexes of Batagay Megaslump, East Siberia

Author:

Park Hansu1ORCID,Ko Na‐Yeon1,Kim JeongEun1,Opel Thomas2ORCID,Meyer Hanno2,Wetterich Sebastian3ORCID,Fedorov Alexander4,Shepelev Andrei G.4ORCID,Jung Hyejung5,Ahn Jinho1ORCID

Affiliation:

1. School of Earth and Environmental Science Seoul National University Seoul Korea

2. Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Potsdam Germany

3. Institute of Geography Technische Universität Dresden Dresden Germany

4. Melnikov Permafrost Institute Siberian Branch RAS Novosibirsk Russia

5. Department of Science Education Ewha Womans University Seoul Korea

Abstract

ABSTRACTRapidly changing permafrost landscapes are a potential key terrestrial source of greenhouse gases (GHGs) at a global scale, yet, remain poorly characterized regarding GHG origins and environmental controls on emissions. Subsurface ice wedges, commonly found across many permafrost landscapes, harbor GHG‐rich gas bubbles. Analyzing these bubbles aids comprehension of subzero temperature GHG formation in permafrost. The Batagay megaslump, Earth's largest known thaw slump in northern Yakutia, provides an opportunity to study mixing ratios and isotopic compositions of both GHGs and non‐GHG in ice wedge samples from two stratigraphic units: the Upper Ice Complex (UIC) and the Lower Ice Complex (LIC). The Ar/N2/O2 compositions and bubble shapes indicated that the studied ice wedges were likely formed through dry snow and/or hoarfrost compaction, and microbial activity remained active after ice wedge formation. The high CO2 and CH4 mixing ratios and carbon stable isotope values suggested that CO2 and CH4 primarily originated from microbial sources. N2O showed an “exclusive relation” with CH4—meaning that high N2O is observed only when CH4 is low, and vice versa—and N2O mixing ratios vary at different depths. These findings suggest that GHG formation in ice wedges is not solely controlled by physiochemical conditions, but involves a complex interplay between microbial activity and environmental conditions. Our study contributes to a better understanding of the dynamics involved in GHG formation within degrading permafrost landscapes.

Funder

National Research Foundation of Korea

Leverhulme Trust

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3