Towards energy‐efficient smart homes via precise nonintrusive load disaggregation based on hybrid ANN–PSO

Author:

Ramadan R.12,Huang Qi13,Bamisile Olusola13,Zalhaf Amr S.12,Mahmoud Karar45ORCID,Lehtonen Matti4,Darwish Mohamed M. F.46ORCID

Affiliation:

1. School of Mechanical and Electrical Engineering University of Electronic Science and Technology of China Chengdu Sichuan China

2. Electrical Power and Machines Engineering Department Tanta University Tanta Egypt

3. College of Nuclear Technology and Automation Engineering Chengdu University of Technology Chengdu China

4. Department of Electrical Engineering and Automation, School of Electrical Engineering Aalto University Espoo Finland

5. Department of Electrical Engineering, Faculty of Engineering Aswan University Aswan Egypt

6. Department of Electrical Engineering, Faculty of Engineering at Shoubra Benha University Cairo Egypt

Abstract

AbstractNowadays, the load monitoring system is an important element in smart buildings to reduce energy consumption. Nonintrusive load monitoring (NILM) is utilized to determine the power consumption of each appliance in smart homes. The main problem of NILM is how to separate each appliance's power from the signal of aggregated consumption. In this regard, this paper presents a combination between particle swarm optimization (PSO) and artificial neural networks (ANNs) to identify electrical appliances for demand‐side management. ANN is applied in NILM as a load identification task, and PSO is used to train the ANN algorithm. This combination enhances the NILM technique's accuracy, which is further verified by experiments on different datasets like Reference Energy Disaggregation Dataset, UK Domestic Appliance‐Level ElectricityUK‐DALE, and Indian data for Ambient Water and electricity Sensing. The high accuracy of the proposed algorithm is verified by comparisons with state of the art methods. Compared with other approaches, the total mean absolute error has decreased from 39.3566 to 18.607. Also, the normalized root mean square error (NRMSE) method has been used to compare the measured and predicted results. The NRMSE is in the range of 1.719%–16.514%, which means perfect consistency. This demonstrates the effectiveness of the proposed approach for home energy management. Furthermore, customer behavior has been studied, considering energy costs during day hours.

Publisher

Wiley

Subject

General Energy,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3