Implementation of shooting technique for Buongiorno nanofluid model driven by a continuous permeable surface

Author:

Rasheed Haroon Ur1,Zeeshan 2,Islam Saeed1,Ali Bilal3,Shah Qayyum4,Ali Rashid3

Affiliation:

1. Department of Mathematics Abdul Wali Khan University Mardan Khyber Pakhtunkhwa Pakistan

2. Department of Mathematics and Statistics Bacha Khan University Charsadda Khyber Pakhtunkhwa Pakistan

3. School of mathematics and statistics Central South University Changsha Hunan China

4. University of Engineering and Technology Peshawar Khyber Pakhtunkhwa Pakistan

Abstract

AbstractThe current investigation focuses on the thermal characteristics and heat and mass transfer in the context of their applications. There has been a lot of interest in the utilization of non‐Newtonian liquids in various engineering and biological fields. Having such considerable attention on non‐Newtonian liquids, the goal is to investigate the flow nature of viscoelastic nanoliquid flow driven by a permeable stretchable surface considering the Buongiorno nanofluid model with suction or injection and mixed convection. This model includes Brownian diffusion, thermophoresis, and radiation effects. The thermal boundary layer theories established the constitutive flow equations, that is, the momentum, diffusion balance, and energy expressions. The established partial differential equations are diminished to dimensionless coupled ordinary differential equations by taking the assistance of proper transformations of nonlinearities. An efficient and validated numerical algorithm is implemented as a computational technique where Mathematica 11.0 environment, a programming tool, is developed for fluid dynamics. The convergence standard had also been recognized for the precision of the relevant parameters by using boundary postulates. The impact of embedded physical quantities of practical interest is examined and offered via the plotted graphs. In addition, the impression of system parameters on drag force, heat, and mass flow coefficient with three‐dimensional graphs is also debated.

Publisher

Wiley

Subject

Fluid Flow and Transfer Processes,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3