Frequency‐dependent dynamic moduli prediction for general bio‐inspired staggered platelet reinforced composites

Author:

Rao Yanni12ORCID,Wan Wei12ORCID,Wei Ning12ORCID,Wang Kui12ORCID

Affiliation:

1. Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic & Transportation Engineering Central South University Changsha China

2. Joint International Research Laboratory of Key Technology for Rail Traffic Safety Central South University Changsha China

Abstract

AbstractLoad‐bearing biological staggered composites, like nacre, teeth, and bone, possess an exceptional combination of material properties like high stiffness and high toughness. To date, most of the analytical research are for nacre‐like bio‐inspired staggered composites, with highly overlapped platelets. But the collagen fibril‐like staggered composites, with slender or barely overlapped platelets, are out of their scope. This motivates this work. In this paper, based on the previous research, according to the elastic‐viscoelastic corresponding principle, an analytical model for dynamic properties of general bio‐inspired staggered composites is presented. Moreover, the effect of loading frequency in a wide range is studied. The accuracy of the model is verified by comparison with existing models and finite element simulations. Besides, parametric analyses and sensitivity analysis are conducted thoroughly. The results reveal that besides the platelet concentration and the platelet aspect ratio, the platelet overlap ratio also influences the damping behavior of bio‐inspired staggered composites to a certain extent; for biological/biomimetic composites with a larger overlap ratio, higher loss modulus is possible to be achieved, and the optimal aspect ratio is mostly within [5, 30]. These findings are of great significance to the optimal design of bio‐inspired engineering materials in the future.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3