Aged mice are less susceptible to motion sickness and show decreased efferent vestibular activity compared to young adults

Author:

Lorincz David1ORCID,Drury Hannah R.1,Smith Doug W.1,Lim Rebecca1,Brichta Alan M.1

Affiliation:

1. School of Biomedical Sciences and Pharmacy The University of Newcastle Callaghan New South Wales Australia

Abstract

AbstractIntroductionThe efferent vestibular system (EVS) is a feedback circuit thought to modulate vestibular afferent activity by inhibiting type II hair cells and exciting calyx‐bearing afferents in the peripheral vestibular organs. In a previous study, we suggested EVS activity may contribute to the effects of motion sickness. To determine an association between motion sickness and EVS activity, we examined the effects of provocative motion (PM) on c‐Fos expression in brainstem efferent vestibular nucleus (EVN) neurons that are the source of efferent innervation in the peripheral vestibular organs.Methodsc‐Fos is an immediate early gene product expressed in stimulated neurons and is a well‐established marker of neuronal activation. To study the effects of PM, young adult C57/BL6 wild‐type (WT), aged WT, and young adult transgenic Chat‐gCaMP6f mice were exposed to PM, and tail temperature (Ttail) was monitored using infrared imaging. After PM, we used immunohistochemistry to label EVN neurons to determine any changes in c‐Fos expression. All tissue was imaged using laser scanning confocal microscopy.ResultsInfrared recording of Ttail during PM indicated that young adult WT and transgenic mice displayed a typical motion sickness response (tail warming), but not in aged WT mice. Similarly, brainstem EVN neurons showed increased expression of c‐Fos protein after PM in young adult WT and transgenic mice but not in aged cohorts.ConclusionWe present evidence that motion sickness symptoms and increased activation of EVN neurons occur in young adult WT and transgenic mice in response to PM. In contrast, aged WT mice showed no signs of motion sickness and no change in c‐Fos expression when exposed to the same provocative stimulus.

Funder

National Health and Medical Research Council

University of Newcastle Australia

Publisher

Wiley

Subject

Behavioral Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3