Joint relay and channel selection in relay‐aided anti‐jamming system: A reinforcement learning approach
Author:
Affiliation:
1. College of Communications Engineering Army Engineering University of PLA Nanjing China
2. PLA 32381 Troops Beijing China
Funder
National Natural Science Foundation of China
Publisher
Wiley
Subject
Electrical and Electronic Engineering
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.4243
Reference29 articles.
1. Decode-and-Forward Buffer-Aided Relay Selection in Cognitive Relay Networks
2. Exploiting Sparsity for Multiple Relay Selection with Relay Gain Control in Large AF Relay Networks
3. An Anti-Jamming Hierarchical Optimization Approach in Relay Communication System via Stackelberg Game
4. Dynamic Spectrum Anti-Jamming Communications: Challenges and Opportunities
5. SlimeniF ScheersB NirVL ChtourouZ AttiaR. Learning multi‐channel power allocation against smart jammer in cognitive radio networks. Paper presented at: Proceedings of the 2016 International Conference on Military Communications and Information Systems (ICMCIS) Bangkok Thailand; May 23‐24 2016:1‐7.
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Joint power and hopping rate adaption against follower jammer based on deep reinforcement learning;Transactions on Emerging Telecommunications Technologies;2022-12-05
2. Deep Reinforcement Learning-Based Computation Offloading for Anti-jamming in Fog Computing Networks;Proceedings of the 2022 12th International Conference on Communication and Network Security;2022-12
3. Multipower‐level Q ‐learning algorithm for random access in nonorthogonal multiple access massive machine‐type communications systems;Transactions on Emerging Telecommunications Technologies;2022-04-10
4. Data‐driven approach to design energy‐efficient joint precoders at source and relay using deep learning in MIMO‐CRNs;Transactions on Emerging Telecommunications Technologies;2022-02-09
5. Joint relay and channel selection against mobile and smart jammer: A deep reinforcement learning approach;IET Communications;2021-07-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3