Assessing the performance of polyphosphate accumulating organisms in a full‐scale side‐stream enhanced biological phosphorous removal

Author:

Aghilinasrollahabadi Khashayar1ORCID,Saffari Ghandehari Shahrzad1,Kjellerup Birthe Veno1ORCID,Nguyen Caroline2,Saavedra Yerman2,Li Guangbin1

Affiliation:

1. Department of Civil and Environmental Engineering University of Maryland College Park Maryland USA

2. WSSC Water Laurel Maryland USA

Abstract

AbstractPhosphorous (P) removal in wastewater treatment is essential to prevent eutrophication in water bodies. Side‐stream enhanced biological phosphorous removal (S2EBPR) is utilized to improve biological P removal by recirculating internal streams within a side‐stream reactor to generate biodegradable carbon (C) for polyphosphate accumulating organisms (PAOs). In this study, a full‐scale S2EBPR system in a water resource recovery facility (WRRF) was evaluated for 5 months. Batch experiments revealed a strong positive correlation (r = 0.91) between temperature and C consumption rate (3.56–8.18 mg‐COD/g‐VSS/h) in the system, with temperature ranging from 14°C to 18°C. The anaerobic P‐release to COD‐uptake ratio decreased from 0.93 to 0.25 mg‐P/mg‐COD as the temperature increased, suggesting competition between PAOs and other C‐consumers, such as heterotrophic microorganisms, to uptake bioavailable C. Microbial community analysis did not show a strong relationship between abundance and activity of PAO in the tested WRRF. An assessment of the economic feasibility was performed to compare the costs and benefits of a full scale WRRF with and without implementation of the S2EBPR technology. The results showed the higher capital costs required for S2EBPR were estimated to be compensated after 5 and 11 years of operation, respectively, compared to chemical precipitation and conventional EBPR. The results from this study can assist in the decision‐making process for upgrading a conventional EBPR or chemical P removal process to S2EBPR.Practitioner Points Implementation of S2EBPR presents adaptable configurations, exhibiting advantages over conventional setups in addressing prevalent challenges associated with phosphorous removal. A full‐scale S2EBPR WRRF was monitored over 5 months, and activity tests were used to measure the kinetic parameters. The seasonal changes impact the kinetic parameters of PAOs in the S2EBPR process, with elevated temperatures raising the carbon demand. PAOs abundance showed no strong correlation with their activity in the full‐scale S2EBPR process in the tested WRRF. Feasibility assessment shows that the benefits from S2EBPR operation can offset upgrading costs from conventional BPR or chemical precipitation.

Funder

A. James Clark School of Engineering

Publisher

Wiley

Subject

Water Science and Technology,Ecological Modeling,Waste Management and Disposal,Pollution,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3