CRISPR‐interceded CHO cell line development approaches

Author:

Amiri Shahin1ORCID,Adibzadeh Setare1ORCID,Ghanbari Samaneh1ORCID,Rahmani Behnaz1ORCID,Kheirandish Mohammad H.12ORCID,Farokhi‐Fard Aref1ORCID,Dastjerdeh Mansoureh S.1ORCID,Davami Fatemeh1ORCID

Affiliation:

1. Department of Medical Biotechnology, Biotechnology Research Center Pasteur Institute of Iran Tehran Iran

2. Department of Medical Biotechnology, School of Advanced Technologies Tehran University of Medical Sciences Tehran Iran

Abstract

AbstractFor industrial production of recombinant protein biopharmaceuticals, Chinese hamster ovary (CHO) cells represent the most widely adopted host cell system, owing to their capacity to produce high‐quality biologics with human‐like posttranslational modifications. As opposed to random integration, targeted genome editing in genomic safe harbor sites has offered CHO cell line engineering a new perspective, ensuring production consistency in long‐term culture and high biotherapeutic expression levels. Corresponding the remarkable advancements in knowledge of CRISPR‐Cas systems, the use of CRISPR‐Cas technology along with the donor design strategies has been pushed into increasing novel scenarios in cell line engineering, allowing scientists to modify mammalian genomes such as CHO cell line quickly, readily, and efficiently. Depending on the strategies and production requirements, the gene of interest can also be incorporated at single or multiple loci. This review will give a gist of all the most fundamental recent advancements in CHO cell line development, such as different cell line engineering approaches along with donor design strategies for targeted integration of the desired construct into genomic hot spots, which could ultimately lead to the fast‐track product development process with consistent, improved product yield and quality.

Publisher

Wiley

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3