Immigration drives ship rat population irruptions in marginal high‐elevation habitat in response to pulsed resources

Author:

Carpenter Joanna K.1ORCID,Monks Adrian1ORCID,Innes John2ORCID,Griffiths James3,Anderson Dean4ORCID

Affiliation:

1. Manaaki Whenua – Landcare Research Dunedin New Zealand

2. Manaaki Whenua – Landcare Research Hamilton New Zealand

3. Department of Conservation Wellington New Zealand

4. Manaaki Whenua – Landcare Research Lincoln New Zealand

Abstract

AbstractPest animal populations, such as rodents, often irrupt in response to pulsed resources. However, few studies have considered how understanding the propagation of irruptions across landscapes could lead to more efficient pest suppression. Resource pulses might create temporary source–sink dynamics in heterogeneous environments, whereby reservoirs of animals living in high‐quality habitat increase and spill over into more marginal habitat. Low‐density populations in marginal habitat could also increase through in situ breeding by residents in response to increased food availability. Understanding the relative importance of these two nonmutually exclusive processes is important as pest outbreaks could potentially be more efficiently controlled by targeting source populations early in an outbreak. We used a Bayesian hierarchical model to estimate the importance of density‐dependent emigration from lower elevation habitats versus in situ breeding by resident animals to the population growth of invasive ship rats (Rattus rattus) in marginal, high elevation habitats during a pulsed resource event (beech seed mast). We found that emigration from lower elevations was important for facilitating rapid population growth at high elevations, enabling rats to reach peak densities of 10.6 rats ha−1. Without immigration, rats were predicted to reach peak densities of only 1.8 rats ha−1 at high elevation, given their densities in that habitat when we started monitoring (0.6 rats ha−1). This result suggests that rat control that targets low and mid‐elevations only may be sufficient to suppress irruptions in high‐elevation habitat if control effectively prevents immigration. Our study suggests spillover from higher quality habitats may enable outbreaks to rapidly propagate over landscapes. However, for r‐selected taxa such as rodents, even very low densities of animals living in marginal habitats can increase significantly when resource pulses occur, albeit at lower densities than for populations in higher quality habitat.

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3