Surface‐modified NiFe2O4 nanoparticles for the production of biodiesel from fatty acids and microalgae lipids Dunaliella salina

Author:

Pandey Manisha1ORCID,Kumar Neeraj1ORCID,Prasad Nitesh2ORCID,Asthana Ravi Kumar2ORCID,Ranganath Kalluri V. S.1ORCID

Affiliation:

1. Department of Chemistry, Institute of Science Banaras Hindu University Varanasi India

2. Department of Botany, Institute of Science Banaras Hindu University Varanasi India

Abstract

Development of a new and sustainable catalyst is necessary to the society for providing economical technology. Surface modification of nanometal oxides is one of the rapidly growing methods for developing a sustainable catalyst with attractive properties than their parent oxide. In this work, surface‐modified nickel ferrites have been carried out using 4,4′‐biphenyldisulfonic acid (BPDSA) as the linker. Thus, obtained modified material has been characterized using different techniques such as DLS, FT‐IR, TGA, XRD, VSM, and XPS. This well‐characterized, stable, robust, recyclable material offers a good conversion in the fatty acid, that is, oleic acid esterification in the presence of methanol in a short period of time (3.0 h). Based on the kinetic study in the oleic acid esterification, it fits in the pseudo first‐order kinetics, and activation energy was found to be 60.0 kJ/mol. Further, the potentiality of our catalyst was also tested in the transesterification of various raw materials like mustard oil, olive oil, almond oil, and neem oil. In addition, it provides an excellent conversion with microalgae lipid extraction for the production of biodiesel. The kinematic viscosity of the methyl oleate (biodiesel) has been found to be 5.0426 mm2/s at 25°C whereas the dynamic viscosity is 6.0511 mPa, which is nearly the same as biodiesel obtained from Dunaliella salina, microalgae lipid.

Funder

CSIR - Institute of Microbial Technology

Publisher

Wiley

Subject

Inorganic Chemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3