Walruses from space: walrus counts in simultaneous remotely piloted aircraft system versus very high‐resolution satellite imagery

Author:

Cubaynes Hannah C.1ORCID,Forcada Jaume1,Kovacs Kit M.2,Lydersen Christian2,Downie Rod3,Fretwell Peter T.1ORCID

Affiliation:

1. British Antarctic Survey High Cross, Madingley Road Cambridge CB3 0ET UK

2. Norwegian Polar Institute, Fram Centre 9296 Tromsø Norway

3. WWF‐UK, Living Planet Centre Rufford House, Brewery Road Woking GU21 4LL UK

Abstract

AbstractRegular counts of walruses (Odobenus rosmarus) across their pan‐Arctic range are necessary to determine accurate population trends and in turn understand how current rapid changes in their habitat, such as sea ice loss, are impacting them. However, surveying a region as vast and remote as the Arctic with vessels or aircraft is a formidable logistical challenge, limiting the frequency and spatial coverage of field surveys. An alternative methodology involving very high‐resolution (VHR) satellite imagery has proven to be a useful tool to detect walruses, but the feasibility of accurately counting individuals has not been addressed. Here, we compare walrus counts obtained from a VHR WorldView‐3 satellite image, with a simultaneous ground count obtained using a remotely piloted aircraft system (RPAS). We estimated the accuracy of the walrus counts depending on (1) the spatial resolution of the VHR satellite imagery, providing the same WorldView‐3 image to assessors at three different spatial resolutions (i.e., 50, 30 and 15 cm per pixel) and (2) the level of expertise of the assessors (experts vs. a mixed level of experience – representative of citizen scientists). This latter aspect of the study is important to the efficiency and outcomes of the global assessment programme because there are citizen science campaigns inviting the public to count walruses in VHR satellite imagery. There were 73 walruses in our RPAS ‘control’ image. Our results show that walruses were under‐counted in VHR satellite imagery at all spatial resolutions and across all levels of assessor expertise. Counts from the VHR satellite imagery with 30 cm spatial resolution were the most accurate and least variable across levels of expertise. This was a successful first attempt at validating VHR counts with near‐simultaneous, in situ, data but further assessments are required for walrus aggregations with different densities and configurations, on different substrates.

Funder

Norsk Polarinstitutt

Natural Environment Research Council

Publisher

Wiley

Reference55 articles.

1. Airbus. (2022)Pleiades imagery user guide. Available from:https://www.intelligence‐airbusds.com/en/8718‐user‐guides[Accessed 18th August 2023].

2. Albedo. (2023)Technical specifications. Available from:https://albedo.com/#capability[Accessed 18th August 2023].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3