Targeting SRSF10 might inhibit M2 macrophage polarization and potentiate anti‐PD‐1 therapy in hepatocellular carcinoma

Author:

Cai Jialiang123,Song Lina123ORCID,Zhang Feng45ORCID,Wu Suiyi1,Zhu Guiqi267ORCID,Zhang Peiling123,Chen Shiping123,Du Junxian8,Wang Biao9,Cai Yufan8,Yang Yi9,Wan Jinglei123,Zhou Jian67,Fan Jia67,Dai Zhi123ORCID

Affiliation:

1. Liver Cancer Institute Zhongshan Hospital Fudan University Shanghai P. R. China

2. State Key Laboratory of Genetic Engineering Fudan University Shanghai P. R. China

3. Key Laboratory of Carcinogenesis and Cancer Invasion Fudan University Ministry of Education Shanghai P. R. China

4. Department of Gastroenterology and Hepatology Zhongshan Hospital Fudan University, 180 Fenglin Road Shanghai P. R. China

5. Shanghai Institute of Liver Disease Shanghai P. R. China

6. Department of Liver Surgery and Transplantation Zhongshan Hospital Fudan University Shanghai P. R. China

7. Research Unit of Liver Cancer Recurrence and Metastasis Chinese Academy of Medical Sciences Beijing P. R. China

8. Department of general surgery Zhongshan Hospital Fudan University Shanghai P. R. China

9. Department of Radiation Oncology Zhongshan Hospital Fudan University Shanghai P. R. China

Abstract

AbstractBackgroundThe efficacy of immune checkpoint blockade therapy in patients with hepatocellular carcinoma (HCC) remains poor. Although serine‐ and arginine‐rich splicing factor (SRSF) family members play crucial roles in tumors, their impact on tumor immunology remains unclear. This study aimed to elucidate the role of SRSF10 in HCC immunotherapy.MethodsTo identify the key genes associated with immunotherapy resistance, we conducted single‐nuclear RNA sequencing, multiplex immunofluorescence, and The Cancer Genome Atlas and Gene Expression Omnibus database analyses. We investigated the biological functions of SRSF10 in immune evasion using in vitro co‐culture systems, flow cytometry, various tumor‐bearing mouse models, and patient‐derived organotypic tumor spheroids.ResultsSRSF10 was upregulated in various tumors and associated with poor prognosis. Moreover, SRSF10 positively regulated lactate production, and SRSF10/glycolysis/ histone H3 lysine 18 lactylation (H3K18la) formed a positive feedback loop in tumor cells. Increased lactate levels promoted M2 macrophage polarization, thereby inhibiting CD8+ T cell activity. Mechanistically, SRSF10 interacted with the 3′‐untranslated region of MYB, enhancing MYB RNA stability, and subsequently upregulating key glycolysis‐related enzymes including glucose transporter 1 (GLUT1), hexokinase 1 (HK1), lactate dehydrogenase A (LDHA), resulting in elevated intracellular and extracellular lactate levels. Lactate accumulation induced histone lactylation, which further upregulated SRSF10 expression. Additionally, lactate produced by tumors induced lactylation of the histone H3K18la site upon transport into macrophages, thereby activating transcription and enhancing pro‐tumor macrophage activity. M2 macrophages, in turn, inhibited the enrichment of CD8+ T cells and the proportion of interferon‐γ+CD8+ T cells in the tumor microenvironment (TME), thus creating an immunosuppressive TME. Clinically, SRSF10 could serve as a biomarker for assessing immunotherapy resistance in various solid tumors. Pharmacological targeting of SRSF10 with a selective inhibitor 1C8 enhanced the efficacy of programmed cell death 1 (PD‐1) monoclonal antibodies (mAbs) in both murine and human preclinical models.ConclusionsThe SRSF10/MYB/glycolysis/lactate axis is critical for triggering immune evasion and anti‐PD‐1 resistance. Inhibiting SRSF10 by 1C8 may overcome anti‐PD‐1 tolerance in HCC.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3