Image factory: A method for synthesizing novel CT images with anatomical guidance

Author:

Krishna Arjun1,Yenneti Shanmukha1,Wang Ge2,Mueller Klaus1

Affiliation:

1. Computer Science Department Stony Brook University Stony Brook New York USA

2. Department of Biomedical Engineering Rensselaer Polytechnic Institute Troy New York USA

Abstract

AbstractBackgroundDeep learning in medical applications is limited due to the low availability of large labeled, annotated, or segmented training datasets. With the insufficient data available for model training comes the inability of these networks to learn the fine nuances of the space of possible images in a given medical domain, leading to the possible suppression of important diagnostic features hence making these deep learning systems suboptimal in their performance and vulnerable to adversarial attacks.PurposeWe formulate a framework to address this lack of labeled data problem. We test this formulation in computed tomographic images domain and present an approach that can synthesize large sets of novel CT images at high resolution across the full Hounsfield (HU) range.MethodsOur method only requires a small annotated dataset of lung CT from 30 patients (available online at the TCIA) and a large nonannotated dataset with high resolution CT images from 14k patients (received from NIH, not publicly available). It then converts the small annotated dataset into a large annotated dataset, using a sequence of steps including texture learning via StyleGAN, label learning via U‐Net and semi‐supervised learning via CycleGAN/Pixel‐to‐Pixel (P2P) architectures. The large annotated dataset so generated can then be used for the training of deep learning networks for medical applications. It can also be put to use for the synthesis of CT images with varied anatomies that were nonexistent within either of the input datasets, enriching the dataset even further.ResultsWe demonstrate our framework via lung CT‐Scan synthesis along with their novel generated annotations and compared it with other state of the art generative models that only produce images without annotations. We evaluate our framework effectiveness via a visual turing test with help of a few doctors and radiologists.ConclusionsWe gain the capability of generating an unlimited amount of annotated CT images. Our approach works for all HU windows with minimal depreciation in anatomical plausibility and hence could be used as a general purpose framework for annotated data augmentation for deep learning applications in medical imaging.

Funder

National Institutes of Health

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3