Application of aminotrimethylphosphonic acid modified starch‐based flame retardant in cellulosic paper

Author:

Chen Guang1,Liu Zhuo1,Deng Songling2,Zhao Wenguang1,Chen Qi‐Jie1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Changsha University of Science and Technology Changsha Hunan People's Republic of China

2. School of Mechanical Engineering Hunan Industry Polytechnic Changsha Hunan People's Republic of China

Abstract

AbstractThe development of green and efficient bio‐based flame retardants is very important for the development of flame‐retardant cellulosic paper. In this study, a novel type of starch‐based synergistic flame retardant (SAPU) was prepared using corn starch as carbon sources, amino trimethylphosphonic acid, and urea as phosphorus and nitrogen sources through the one‐pot method. Subsequently, the flame‐retardant cellulosic paper was prepared by impregnation, and the flame retardancy of the cellulosic paper was evaluated by vertical combustion, limiting oxygen index (LOI), and thermogravimetric analysis. The results demonstrated that the SAPU exhibited a favorable flame‐retardant effect on cellulosic paper. At a concentration of 25.0%, the vertical burning residue of flame‐retardant paper accounted for 49.16% of the total length of the paper sample, while the LOI was 39.4%. The tensile strength and burst index of cellulosic paper were found to be decreased by 6.36% and 19.1%, respectively, in comparison to the base paper. Conversely, the ring crush strength was observed to be increased by 156.2%. The carbon residue rate at 700°C under a nitrogen atmosphere rose from 11.56% of the base paper to 28.77% of the flame‐retardant paper. The flame‐retardant SAPU effectively improved the thermal stability of cellulosic paper.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3