Injectable sustained‐release poly(lactic‐co‐glycolic acid) (PLGA) microspheres of exenatide prepared by supercritical fluid extraction of emulsion process based on a design of experiment approach

Author:

Park Heejun1ORCID,Ha Eun‐Sol2ORCID,Kim Jeong‐Soo3ORCID,Kim Min‐Soo2ORCID

Affiliation:

1. College of Pharmacy Duksung Women's University Seoul South Korea

2. College of Pharmacy Pusan National University Busan South Korea

3. Dong‐A ST Research Institute Dong‐A ST Co. Ltd. Giheung‐gu Yongin‐si Gyeonggi South Korea

Abstract

AbstractThis study aimed to develop an improved sustained‐release (SR) PLGA microsphere of exenatide using supercritical fluid extraction of emulsions (SFEE). As a translational research, we investigated the effect of various process parameters on the fabrication of exenatide‐loaded PLGA microspheres by SFEE (ELPM_SFEE) using the Box–Behnken design (BBD), a design of experiment approach. Further, ELPM obtained under optimized conditions and satisfying all the response criteria were compared with PLGA microspheres prepared using the conventional solvent evaporation (ELPM_SE) method through various solid‐state characterizations and in vitro and in vivo evaluations. The four process parameters selected as independent variables were pressure (X1), temperature (X2), stirring rate (X3), and flow ratio (X4). The effects of these independent variables on five responses, namely the particle size, its distribution (SPAN value), encapsulation efficiency (EE), initial drug burst release (IBR), and residual organic solvent, were evaluated using BBD. Based on the experimental results, a desirable range of combinations of various variables in the SFEE process was determined by graphical optimization. Solid‐state characterization and in vitro evaluation revealed that ELPM_SFEE improved properties, including a smaller particle size and SPAN value, higher EE, lower IBR, and lower residual solvent. Furthermore, the pharmacokinetic and pharmacodynamic study results indicated better in vivo efficacy with desirable SR properties, including a reduction in blood glucose levels, weight gain, and food intake, for ELPM_SFEE than those generated using SE. Therefore, the potential drawback of conventional technologies such as the SE for the preparation of injectable SR PLGA microspheres could be improved by optimizing the SFEE process.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3