Effect of the ten‐year fishing ban on change of phytoplankton community structure: Insights from the Gan River

Author:

Ye Peng1,Lu Xinwen1,Xia Wenxin1,Wang Yating1,Zhou Chunhua1,Liu Xiongjun2ORCID,Ouyang Shan1,Wu Xiaoping1

Affiliation:

1. School of Life Sciences Nanchang University Nanchang China

2. Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Sciences Jiaying University Meizhou China

Abstract

AbstractThe Yangtze River is one of the largest riverine ecosystems in the world and is a biodiversity hotspot. In recent years, this river ecosystem has undergone rapid habitat deterioration due to anthropogenic disturbances, leading to a decrease in freshwater biodiversity. Owing to these anthropogenic impacts, the Chinese government imposed a “Ten‐year fishing ban” (TYFB) in the Yangtze River and its tributaries. Ecological changes associated with this decision have not been documented to evaluate the level of success. This study evaluates the success of the TYFB by analyzing the changes in phytoplankton communities and comparing them to periods before the TYFB was imposed. A total of 325 phytoplankton species belonging to 7 phyla and 103 genera dominated by Chlorophyceae and Bacillariophyceae were identified. Species diversity according to the Shannon–Wiener ranged between 1.19 and 3.00. The results indicated that phytoplankton diversity increased, while both density and biomass decreased after the TYFB. The health of the aquatic ecosystem appeared to have improved after the TYFB, as indicated by the phytoplankton‐based index of biotic integrity. Significant seasonal and spatial differences were found among the number of species, density, and biomass of phytoplankton, where these differences were correlated with pH, water depth, chlorophyll‐a, permanganate index, transparency, copper, ammonia nitrogen, and total phosphorus based on redundancy analysis. Results from this study indicate that the TYFB played an important role in the restoration of freshwater ecosystem in the Yangtze River and its tributaries.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3