Evaluation of forest ecosystem resilience to drought considering lagged effects of drought

Author:

Xu Qingfeng1ORCID,Yu Ruyue2,Guo Lili1

Affiliation:

1. Yellow River Engineering Consulting Co., Ltd. Zhengzhou China

2. College of Land Science and Technology China Agricultural University Beijing China

Abstract

AbstractDrought can cause significant disruption to forest ecosystems and may have long‐term impacts on the structure and function of ecosystems after the end of drought. This is the key to quantifying the ability of ecosystem to respond to disturbance events by comprehensively analyzing the impact of drought on vegetation, the lagged effect, and ecosystem resilience to drought. This article takes broad‐leaved forests and coniferous forests in multiple temperature zones of China as the object of study, using distributed lagged nonlinear model (DLNM) to construct a systematic method. Our results show that the main sensitive lagged time for coniferous forests and broad‐leaved forests is the first 3 months in various temperature zones, with the strongest lagged effect in the month when the drought incidents occur. Coping capacity represents ecosystems to remain stable during droughts, and we quantified the indicator by the ratio of the resistance (the difference between NDVI value before the drought and during the drought) to recovery (the difference between NDVI value after the drought and during the drought). When dealing with intensive drought events, the coping capacity of subtropical broad‐leaved forests (−0.67) and tropical broad‐leaved forests (−0.88) exhibit the strongest coping capacity (value tends to −1). Overall, vegetation growth in subtropical and tropical regions is less affected by drought compared to temperate and cold temperate zones. The research results help us understand the comprehensive impact of drought on vegetation and the strategies for different vegetation to cope with drought.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3