Fluid Shear Stress Promotes Embryonic Stem Cell Pluripotency via Interplay Between β-Catenin and Vinculin in Bioreactor Culture

Author:

Nath Suman C.12,Day Bradley1,Harper Lane1,Yee Jeffrey1,Hsu Charlie Yu-Ming1,Larijani Leila23,Rohani Leili1,Duan Nicholas1,Kallos Michael S.245,Rancourt Derrick E.123

Affiliation:

1. Department of Biochemistry and Molecular Biology, Cumming School of Medicine University of Calgary, Calgary, Alberta, Canada

2. McCaig Institute for Bone and Joint Health, Cumming School of Medicine University of Calgary, Calgary, Alberta, Canada

3. Department of Medical Genetics, Cumming School of Medicine University of Calgary, Calgary, Alberta, Canada

4. Pharmaceutical Production Research Facility, Schulich School of Engineering University of Calgary, Calgary, Alberta, Canada

5. Department of Chemical and Petroleum Engineering, Schulich School of Engineering University of Calgary, Calgary, Alberta, Canada

Abstract

Abstract The expansion of pluripotent stem cells (PSCs) as aggregates in stirred suspension bioreactors is garnering attention as an alternative to adherent culture. However, the hydrodynamic environment in the bioreactor can modulate PSC behavior, pluripotency and differentiation potential in ways that need to be well understood. In this study, we investigated how murine embryonic stem cells (mESCs) sense fluid shear stress and modulate a noncanonical Wnt signaling response to promote pluripotency. mESCs showed higher expression of pluripotency marker genes, Oct4, Sox2, and Nanog in the absence of leukemia inhibitory factor (LIF) in stirred suspension bioreactors compared to adherent culture, a phenomenon we have termed mechanopluripotency. In bioreactor culture, fluid shear promoted the nuclear translocation of the less well-known pluripotency regulator β-catenin and concomitant increase of c-Myc expression, an upstream regulator of Oct4, Sox2, and Nanog. We also observed similar β-catenin nuclear translocation in LIF-free mESCs cultured on E-cadherin substrate under defined fluid shear stress conditions in flow chamber plates. mESCs showed lower shear-induced expression of pluripotency marker genes when β-catenin was inhibited, suggesting that β-catenin signaling is crucial to mESC mechanopluripotency. Key to this process is vinculin, which is known to rearrange and associate more strongly with adherens junctions in response to fluid shear. When the vinculin gene is disrupted, we observe that nuclear β-catenin translocation and mechanopluripotency are abrogated. Our results indicate that mechanotransduction through the adherens junction complex is important for mESC pluripotency maintenance.

Funder

CANRIMT, NSERC

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3