Affiliation:
1. Department of Neurology Sheba Medical Center Tel Hashomer Ramat Gan Israel
2. Department of Physical Therapy, Faculty of Medicine Tel Aviv University Tel Aviv Israel
3. Department of Neurology and Neurosurgery, Faculty of Medicine Tel‐Aviv University Tel‐Aviv Israel
4. Robert and Martha Harden Chair in Mental and Neurological Diseases, Faculty of Medicine Tel Aviv University Tel Aviv Israel
5. Faculty of Medicine Tel‐Aviv University Tel‐Aviv Israel
6. The Danek Gertner Institute of Human Genetics, Sheba Medical Center Tel Hashomer Israel
Abstract
AbstractObjectiveNeuromuscular evaluation increasingly employs muscle ultrasonography to determine muscle thickness, mean grayscale echointensity, and visual semiquantitative echotexture attenuation. However, these measures provide low sensitivity for detection of mild muscle abnormality. Exercise‐induced intramuscular blood flow is a physiologic phenomenon, which may be impaired in mildly affected muscles, particularly in dystrophinopathies, and may indicate functional muscle ischemia. We aimed to determine if muscle blood flow is reduced in patients with neuromuscular disorders and preserved muscle strength, and if it correlates with echointensity and digital echotexture measurements.MethodsPeak exercise‐induced blood flow, echointensity, and echotexture were quantified in the elbow flexor muscles of 15 adult patients with Becker muscular dystrophy (BMD) and 13 patients with other muscular dystrophies (OMD). These were compared to 17 patients with Charcot–Marie–Tooth type 1 (CMT1) neuropathy and 21 healthy adults from a previous study.ResultsMuscle blood flow was reduced in all patient groups compared to controls, most prominently in BMD patients (p < 0.0001). Echointensity was similarly increased in all patient groups (p < 0.05), while echotexture was reduced only in muscular dystrophy patients (p ≤ 0.002). In BMD, blood flow correlated with echotexture (Pearson r = 0.6098, p = 0.0158) and strength (Spearman r = 0.5471; p = 0.0370). In patients with normal muscle strength, reduced muscle blood flow was evident in all patient groups (p < 0.001), echotexture was reduced in BMD and OMD (p < 0.01), and echointensity was increased in CMT (p < 0.05).InterpretationMuscle blood flow is a sensitive measure to detect abnormality, even in muscles with normal strength. Increased echointensity may indicate a neurogenic disorder when strength is preserved, while low echotexture suggests a dystrophic disease.