Distinct plasma metabolomic signatures differentiate autoimmune encephalitis from drug‐resistant epilepsy

Author:

Xiong Wenzheng12ORCID,Yeo Tianrong2345,May Jeanne Tan May34,Demmers Tor2,Ceronie Bryan6,Ramesh Archana6,McGinty Ronan N.6,Michael Sophia6,Torzillo Emma6,Sen Arjune6,Anthony Daniel C.2,Irani Sarosh R.678ORCID,Probert Fay1

Affiliation:

1. Department of Chemistry University of Oxford Oxford UK

2. Department of Pharmacology, Medical Sciences Division University of Oxford Oxford UK

3. Department of Neurology National Neuroscience Institute Singapore Singapore

4. Duke‐NUS Medical School Singapore Singapore

5. Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore

6. Nuffield Department of Clinical Neurosciences University of Oxford Oxford UK

7. Department of Neurology John Radcliffe Hospital, Oxford University Hospitals Oxford UK

8. Departments of Neurology and Neurosciences Mayo Clinic Jacksonville Florida USA

Abstract

AbstractObjectiveDifferentiating forms of autoimmune encephalitis (AE) from other causes of seizures helps expedite immunotherapies in AE patients and informs studies regarding their contrasting pathophysiology. We aimed to investigate whether and how Nuclear Magnetic Resonance (NMR)‐based metabolomics could differentiate AE from drug‐resistant epilepsy (DRE), and stratify AE subtypes.MethodsThis study recruited 238 patients: 162 with DRE and 76 AE, including 27 with contactin‐associated protein‐like 2 (CASPR2), 29 with leucine‐rich glioma inactivated 1 (LGI1) and 20 with N‐methyl‐d‐aspartate receptor (NMDAR) antibodies. Plasma samples across the groups were analyzed using NMR spectroscopy and compared with multivariate statistical techniques, such as orthogonal partial least squares discriminant analysis (OPLS‐DA).ResultsThe OPLS‐DA model successfully distinguished AE from DRE patients with a high predictive accuracy of 87.0 ± 3.1% (87.9 ± 3.4% sensitivity and 86.3 ± 3.6% specificity). Further, pairwise OPLS‐DA models were able to stratify the three AE subtypes. Plasma metabolomic signatures of AE included decreased high‐density lipoprotein (HDL, −(CH2)n−, –CH3), phosphatidylcholine and albumin (lysyl moiety). AE subtype‐specific metabolomic signatures were also observed, with increased lactate in CASPR2, increased lactate, glucose, and decreased unsaturated fatty acids (UFA, –CH2CH=) in LGI1, and increased glycoprotein A (GlycA) in NMDAR‐antibody patients.InterpretationThis study presents the first non‐antibody‐based biomarker for differentiating DRE, AE and AE subtypes. These metabolomics signatures underscore the potential relevance of lipid metabolism and glucose regulation in these neurological disorders, offering a promising adjunct to facilitate the diagnosis and therapeutics.

Funder

NIHR Oxford Biomedical Research Centre

Epilepsy Research UK

UCB Pharma

National Medical Research Council

Medical Research Foundation

British Medical Association

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3