CHO synthetic promoters improve expression and product quality of biotherapeutic proteins

Author:

Sou Si Nga1ORCID,Harris Claire L.1,Williams Rebecca1,Kozub Dorota1,Zurlo Fabio1,Patel Yash D.2,Kallamvalli Illam Sankaran Praveen1,Daramola Olalekan1,Brown Adam2,James David C.2,Hatton Diane1,Dunn Sarah1,Gibson Suzanne J.1

Affiliation:

1. BioPharmaceutical Development, R&D AstraZeneca Cambridge UK

2. Department of Chemical and Biological Engineering University of Sheffield Sheffield UK

Abstract

AbstractWhen expressing complex biotherapeutic proteins, traditional expression plasmids and methods may not always yield sufficient levels of high‐quality product. High‐strength viral promoters commonly used for recombinant protein (rProtein) production in mammalian cells allow for maximal expression, but provide limited scope to alter their transcription dynamics. However, synthetic promoters designed to provide tunable transcriptional activity offer a plasmid engineering approach to more precisely regulate product quality, yield or to reduce product related contaminants. We substituted the viral promoter CMV with synthetic promoters that offer different transcriptional activities to express our gene of interest in Chinese hamster ovary (CHO) cells. Stable pools were established and the benefits of regulating transgene transcription on the quality of biotherapeutics were examined in stable pool fed‐batch overgrow experiments. Specific control of gene expression of the heavy chain (HC):light chain (LC) of a Fab, and the ratio between the two HCs in a Duet mAb reduced levels of aberrant protein contaminants; and the controlled expression of the helper gene XBP‐1s improved expression of a difficult‐to‐express mAb. This synthetic promoter technology benefits applications that require custom activity. Our work highlights the advantages of employing synthetic promoters for production of more complex rProteins.

Publisher

Wiley

Subject

Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3