Mechanism of a novel antibacterial polymeric film with freshness‐retentive and hygiene‐keeping functions

Author:

Hong Yen Ying1,Shijo Anjali Madhavan1ORCID,Narita Junichi2

Affiliation:

1. Research Division, Mitsui Chemicals Singapore R&D Centre Pte. Ltd. Singapore Singapore

2. New Products & Business Development Department Mitsui Chemicals Tohcello Inc Tokyo Japan

Abstract

AbstractThe growing concerns surrounding food loss and waste, coupled with the amplified need for effective antimicrobial technologies due to the COVID‐19 pandemic have highlighted the significance of antimicrobial solutions. This study introduces novel polymer‐based antibacterial films to address such challenges by combining antibacterial properties with durability. Using stearyldiethanolamine (C18DEA) as the active ingredient, the polyethylene‐based (PE) film is designed to prevent bacterial growth on its surface. The present study investigated the antibacterial mechanism, durability, and effectiveness of the films against representative gram‐positive and gram‐negative bacterial strains. The films developed in this study demonstrated notable durability against high water temperatures and harsh light exposure for preserving its antibacterial function on the tested bacteria from both representative groups. Scanning electron microscopy (SEM) analysis of bacteria in contact with film surface revealed damages to cellular structure leading to cell lysis even at the lower tested concentration of 800 ppm C18DEA in the film. Our proposed bactericidal mechanism suggests the alkyl chain of C18DEA disrupts bacterial cell membranes, leading to irreversible damage and cell death. Overall, the films hold significant promise for diverse applications, including extended shelf life for perishable foods and enhanced hygiene management, driven by their durability and potent antimicrobial effects.Highlights Mechanism of action of a PE film with C18DEA as active ingredient was studied. Broad‐spectrum bactericidal effect on gram‐positive and gram‐negative bacteria. Films demonstrated resistance to high water temperatures and light exposure. Study highlights the films' application in hygiene, safety, and food preservation.

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3