High elastic modulus polyethylene: Process‐structure‐property relationships

Author:

Cheng Chung‐Fu1ORCID,McCraw Trevor J.1,Solomon Theo H.1,Yan Michael R.1,Wnek Gary E.1,Olah Andrew1,Baer Eric1

Affiliation:

1. Center for Layered Polymeric Systems (CLiPS), Department of Macromolecular Science and Engineering Case Western Reserve University Cleveland Ohio USA

Abstract

AbstractPrevious studies have shown that gel‐spun‐ultra‐high‐molecular‐weight polyethylene (UHMWPE) produces thin fibril products that exhibit high tensile moduli (35–200 GPa). The elaborate gel‐spinning process involves complex drawing stages with solvent incorporation. In this study, a previously proposed two‐stage, environmentally friendly solventless methodology was optimized. The two‐stage process included cross‐rolling (Stage 1) and orientation (Stage 2) to obtain oriented HDPE thin rods with an impressively high modulus using conventional HDPE. The optimization of the process was successfully achieved by thoroughly investigating the voiding mechanism. In addition, rapid relaxation during orientation supports the cavitation mechanism. Owing to this optimization, a modulus of 75 GPa was readily attained. The significant enhancement in the mechanical properties was a direct result of the optimization of our processing methodology to achieve a high degree of orientation. Notably, the fabricated oriented HDPE thin rods showed moduli comparable to those of the gel‐spun UHMWPE fibers but were at least 40 times thicker. Our comprehensive characterization of the voiding process and stress relaxation during our two‐stage process indicated the formation of a highly taut network structure and craze‐like configuration with controlled delamination. Thus, our proposed hierarchical model was refined to elucidate the process‐structure‐property relationships in greater detail.Highlights An optimized two‐stage environmentally friendly solventless process has been developed to create oriented polyethylene thin rods with impressively high modulus (75 GPa). The optimization was achieved by thoroughly investigating the voiding effect during cross‐rolling and crystalline relaxation during orientation. Comparison of the modulus from our process are similar to various commercial, gel‐spun fibers. Our thin rod products are at least 40 times thicker than commercial gel‐spun fibers. The thin rod product has impressively high modulus‐to‐weight and strength‐to‐weight ratios for future study in composite systems.

Funder

DEVCOM Army Research Laboratory

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3