Sustainable biocomposites from pyrolyzed lignin and recycled nylon 6 with enhanced flame retardant behavior: Studies on manufacturing and quality performance evaluation

Author:

Muir Victoria12,Tripathi Neelima12ORCID,Rodriguez‐Uribe Arturo12ORCID,Mohanty Amar K.12ORCID,Misra Manjusri12ORCID

Affiliation:

1. Bioproducts Discovery and Development Centre, Department of Plant Agriculture Crop Science Building, University of Guelph Guelph Ontario Canada

2. School of Engineering Thornbrough Building, University of Guelph Guelph Ontario Canada

Abstract

AbstractThe recycled nylon (RN)‐based biocomposites were fabricated by adding 25% lignin biocarbon. Lignin was pyrolyzed at 300, 600, and 900°C to produce Lig300, Lig600, and Lig900 biocarbon (BioC) samples, respectively. Higher functionality of Lig600 (unlike Lig900) allowed for improved interfacial interaction with the polar nylon matrix. Mechanical properties were further enhanced for RN_Lig600 composite with enhanced flexural and tensile strength by 18% and 8%, respectively, compared to neat polymer (RN). RN_Lig900 composite showed enhancement in tensile and flexural modulus by 32.6% and 51.1%, respectively, compared to RN. Incorporation of Lig900 in RN matrix resulted in 77.9% reduction in burning rate compared to RN. These results show the potential of lignin BioC as a filler in RN composites for flame retardant applications and mechanical enhancement, such as in the automotive industry.Highlights Effect of pyrolysis temperatures (300, 600, and 900°C) on lignin biomass. Composites prepared from recycled polyamide 6 from carpet waste and biocarbon. Improved interfacial adhesion of 600°C biocarbon with recycled nylon matrix. Enhanced thermal, mechanical properties, reduced flammability of biocomposites. Sustainable biocomposites with 900°C biocarbon reduced burning rate by 78%.

Funder

Natural Sciences and Engineering Research Council of Canada

Federal Economic Development Agency for Southern Ontario

Ontario Ministry of Agriculture, Food and Rural Affairs

Canada Foundation for Innovation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3