Pioneering the direct large‐scale laser printing of flexible “graphenic silicon” self‐standing thin films as ultrahigh‐performance lithium‐ion battery anodes

Author:

Kothuru Avinash1,Cohen Adam2,Daffan Gil2,Juhl Yonatan2,Patolsky Fernando12ORCID

Affiliation:

1. School of Chemistry, Faculty of Exact Sciences Tel Aviv University Tel Aviv Israel

2. Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering Tel Aviv University Tel Aviv Israel

Abstract

AbstractRecent technological advancements, such as portable electronics and electric vehicles, have created a pressing need for more efficient energy storage solutions. Lithium‐ion batteries (LIBs) have been the preferred choice for these applications, with graphite being the standard anode material due to its stability. However, graphite falls short of meeting the growing demand for higher energy density, possessing a theoretical capacity that lags behind. To address this, researchers are actively seeking alternative materials to replace graphite in commercial batteries. One promising avenue involves lithium‐alloying materials like silicon and phosphorus, which offer high theoretical capacities. Carbon–silicon composites have emerged as a viable option, showing improved capacity and performance over traditional graphite or pure silicon anodes. Yet, the existing methods for synthesizing these composites remain complex, energy‐intensive, and costly, preventing widespread adoption. A groundbreaking approach is presented here: the use of a laser writing strategy to rapidly transform common organic carbon precursors and silicon blends into efficient “graphenic silicon” composite thin films. These films exhibit exceptional structural and energy storage properties. The resulting three‐dimensional porous composite anodes showcase impressive attributes, including ultrahigh silicon content, remarkable cyclic stability (over 4500 cycles with ∼40% retention), rapid charging rates (up to 10 A g−1), substantial areal capacity (>5.1 mAh cm−2), and excellent gravimetric capacity (>2400 mAh g−1 at 0.2 A g−1). This strategy marks a significant step toward the scalable production of high‐performance LIB materials. Leveraging widely available, cost‐effective precursors, the laser‐printed “graphenic silicon” composites demonstrate unparalleled performance, potentially streamlining anode production while maintaining exceptional capabilities. This innovation not only paves the way for advanced LIBs but also sets a precedent for transforming various materials into high‐performing electrodes, promising reduced complexity and cost in battery production.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3