A novel hybrid forecasting approach for NOx emission of coal‐fired boiler combined with CEEMDAN and self‐attention improved by LSTM

Author:

Yan Hua12,Chen Yunchi3,Yang Bin12ORCID,Yang Yang12ORCID,Ni Hu12,Wang Ying12

Affiliation:

1. School of Energy and Power Engineering University of Shanghai for Science and Technology Shanghai China

2. Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering University of Shanghai for Science and Technology Shanghai China

3. China Resources Power (Wenzhou) Co., Ltd. Wenzhou China

Abstract

AbstractThe precise prediction of NOx generation concentration in coal‐fired boilers serves as the foundational cornerstone for the judicious optimization and control of selective catalytic reduction denitrification (SCR) systems. Owing to the intricate nature of the denitrification process within SCR, there exists a temporal delay in regulating the ammonia injection rate based on the monitored data of NOx concentration at the SCR inlet. Such delays can give rise to ammonia leakage and subsequent obstruction of the air preheater. In light of this, a predictive model, CEEMDAN‐LSTM‐SA, is proposed as an amalgamation of data decomposition and the LSTM (long short‐term memory) fusion self‐attention mechanism within a deep learning network, which is introduced to forecast the NOx emission concentration at the SCR inlet of coal‐fired units. To mitigate the impact of data outliers on the training effectiveness of the model, a clustering method coupled with a statistical testing strategy is initially applied to refine the dataset first. CEEMDAN data decomposition technology is leveraged to facilitate the breakdown of data, alleviating its non‐stationary and intricate characteristics. Subsequently, through spectral analysis, the decomposed components are grouped and aggregated to form novel data elements, which are then subjected to prediction by the constructed LSTM‐SA deep learning network. The ultimate NOx emission concentration prediction value is derived through a process of fusion. Upon scrutinizing and comparing the predictions derived from various models using coal‐fired power plant data, it is evident that the performance metrics of CEEMDAN‐LSTM‐SA predictions exhibit a mean absolute error of 7.425, mean absolute percentage error of 2.415%, root mean square error of 9.715, R‐squared (R2) value of .789, mean absolute relative error of 2.109%, and a Theil's information criterion of .016. In contrast to other models, including traditional self‐attention networks, LSTM, and LSTM‐SA combination networks, CEEMDAN‐LSTM‐SA proposed in this study demonstrates superior prediction accuracy and enhanced generalization capabilities. Consequently, this predictive model stands poised to furnish an efficacious framework for the SCR ammonia injection strategy within thermal power units.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3