Evaluation of the potential role of glutamatergic, cholinergic, and nitrergic systems in the dopamine release induced by the pesticide glyphosate in rat striatum

Author:

Costas‐Ferreira Carmen1,Durán Rafael1,Faro Lilian R. F.1ORCID

Affiliation:

1. Department of Functional Biology and Health Sciences, Faculty of Biology University of Vigo Vigo Spain

Abstract

AbstractGlyphosate (GLY) is a pesticide that severely alters nigrostriatal dopaminergic neurotransmission, inducing great increases in dopamine release from rat dorsal striatum. This GLY‐induced striatal dopamine overflow occurs through mechanisms not yet fully understood, hence the interest in evaluating the role of other neurotransmitter systems in such effects. So, the main objective of this mechanistic study was to evaluate the possible mediation of the glutamatergic, cholinergic, and nitrergic systems in the GLY‐induced in vivo dopamine release from rat dorsal striatum. The extracellular dopamine levels were measured by cerebral microdialysis and HPLC with electrochemical detection. Intrastriatal administration of GLY (5 mmol/L) significantly increased the dopamine release (1102%). Pretreatment with MK‐801 (50 or 400 μmol/L), a non‐competitive antagonist of NMDA receptors, significantly decreased the effect of GLY (by 70% and 74%, respectively), whereas AP‐5 (400 μmol/L), a competitive antagonist of NMDA receptors, or CNQX (500 μmol/L), an AMPA/kainate receptor antagonist, had no significant effect. Administration of the nitric oxide synthase inhibitors, L‐nitroarginine (L‐NAME, 100 μmol/L) or 7‐nitroindazole (7‐NI, 100 μmol/L), also did not alter the effect of GLY on dopamine release. Finally, pretreatment of the animals with mecamylamine, an antagonist of nicotinic receptors, decreased the effect of GLY on dopamine release by 49%, whereas atropine, a muscarinic antagonist, had no significant effect. These results indicate that GLY‐induced dopamine release largely depends on the activation of NMDA and nicotinic receptors in rat dorsal striatum. Future research is needed to determine the effects of this pesticide at environmentally relevant concentrations.

Funder

Xunta de Galicia

Universidade de Vigo

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3