Determination of Tetracaine and Oxymetazoline in Drugs and Saliva via Potentiometric Sensor Arrays Based on Fluoropolymer/Polyaniline Composites

Author:

Parshina Anna1ORCID,Yelnikova Anastasia1,Shimbareva Valeria1,Komogorova Alla1,Yurova Polina2,Stenina Irina3,Bobreshova Olga1,Yaroslavtsev Andrey3

Affiliation:

1. Department of Analytical Chemistry Voronezh State University Voronezh Russia

2. Basic Department of Inorganic Chemistry and Materials Science National Research University Higher School of Economics Moscow Russia

3. Laboratory of Ionics of Functional Materials Kurnakov Institute of General and Inorganic Chemistry RAS Moscow Russia

Abstract

AbstractA growing interest in dental practice in intranasal anesthesia using tetracaine and oxymetazoline dictates the need for their simultaneous determination in combination drugs and human saliva. Potentiometric multisensory systems based on perfluorosulfonic acid membranes, including polyaniline‐modified ones, were developed for these purposes. A change in the distribution of the sensor sensitivity to the related analytes was achieved by variation of the conditions for concentration polarization at the membrane interface with a studied solution due to a change in the intrapore volume, nature, and availability of the sorption centers, as well as the hydrophilicity of the membrane surface that were specified by the conditions for their synthesis and subsequent hydrothermal treatment. Reversibility of the analyte sorption using the chosen conditions for regeneration provided long‐term stable work of both the sensors and the calibration equations established by multivariate linear regression. The membrane modification promoted their resistance to fouling. The relative errors of the simultaneous tetracaine and oxymetazoline determination in the combination drug solutions were no greater than 7% and 11%, while in the artificial saliva solutions, they were 15% and 17%, respectively, when an array of the cross‐sensitive sensors based on the composite membranes prepared by different methods was used. The analysis errors were reduced to 3%–6% when analyzing the drug and to 0.2%–6% when analyzing the artificial saliva if an array was organized with the sensors based on the membrane with the dopant and the membrane without it, due to the decreasing correlation between their responses.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3