A BMO‐based MRPID controller with optimal control of speed in hybrid stepper motor

Author:

Deepa S. M.1ORCID,Venkatesh C.2,Nandalal V.3

Affiliation:

1. Department of Electronics and Communication Engineering Nehru Institute of Engineering and Technology Coimbatore Tamil Nadu India

2. Department of Electronics and Communication Engineering KGiSL Institute of Technology Coimbatore India

3. Department of Electronics and Communication Engineering Sri Krishna College of Engineering and Technology Coimbatore India

Abstract

AbstractThis paper proposes a Barnacles mating optimizer‐based multi‐resolution proportional‐integral derivative (MRPID) controller for precise speed control of the hybrid stepper motor (HSM). The proposed approach is a barnacle mating optimizer (BMO) control scheme. The main objective of this approach is to use the MRPID controller to improve speed control in particular and uncertain conditions. The BMO is utilized to create the proposed MRPID controller. The proposed converter has a low switching voltage and uses a low input current. The proposed converter supplies a large amount of power to the voltage source inverter (VSI), which converts DC to AC and then supplies it to the HSM. The HSM can be utilized in various settings, including robots and factory applications. Then, the performance of the proposed system has been evaluated in the MATLAB platform and compared with various existing systems. The existing adaptive neuro‐fuzzy inference system (ANFIS) and the moth flame optimization algorithm (MFO) methods are used to validate the efficiency of the proposed controller. The proposed system rise time is 0.0007, the settling time is 0.1, the recovery time is 0.221, the AMU is 1.205, the IAE is 0.1034, and the SSE is 0.234. According to the simulation findings, the suggested system is statistically significant.

Publisher

Wiley

Subject

Applied Mathematics,Control and Optimization,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3