Bioengineer mesenchymal stem cell for treatment of glioma by IL‐12 mediated microenvironment reprogramming and nCD47‐SLAMF7 mediated phagocytosis regulation of macrophages

Author:

Li Man12,Lu Lisen3,Xiao Qungen2,Maalim Ali Abdi2,Nie Bin1,Liu Yanchao2,Kahlert Ulf D.4,Shu Kai2,Lei Ting2,Zhu Mingxin2ORCID

Affiliation:

1. Department of Anesthesiology and Pain Medicine Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health and Wuhan Clinical Research Center for Geriatric Anesthesia Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan People's Republic of China

2. Department of Neurosurgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan People's Republic of China

3. College of Biomedicine and Health and College of Life Science and Technology Huazhong Agricultural University Wuhan China

4. Molecular and Experimental Surgery Clinic for General‐, Visceral‐, Vascular and Transplant Surgery Faculty of Medicine and University Hospital Magdeburg Otto‐von‐Guericke University Magdeburg Germany

Abstract

AbstractHigh expression of cellular self‐activated immunosuppressive molecules and extensive infiltration of suppressive immune cells in the tumor microenvironment are the main factors contributing to glioma's resistance to immunotherapy. Nonetheless, technology to modify the expression of glioma cellular self‐molecules through gene editing requires further development. This project advances cell therapy strategies to reverse the immunosuppressive microenvironment of glioma (TIME). Bone marrow‐derived mesenchymal stem cells (MSCs) are engineered to express bioactive proteins and demonstrate tumor‐homing characteristics upon activation by TGF‐β. These MSCs are designed to secrete the anti‐tumor immune cytokine IL‐12 and the nCD47‐SLAMF7 fusion protein, which regulates T‐cell activity and macrophage phagocytosis. The engineered MSCs are then injected in situ into the glioma site, circumventing the blood‐brain barrier to deliver high local concentrations of bioactive proteins. This approach aims to enhance the M1 polarization of infiltrating macrophages, stimulate macrophage‐mediated tumor cell phagocytosis, activate antigen‐presenting cells, and promote effector CD8+ T cell infiltration, effectively controlling glioma. Additionally, the engineered MSCs may serve as a universal treatment for other tumors that express TGF‐β at high levels. This study proposes a novel treatment strategy for the clinical management of glioma patients.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3