Drug repurposing for Mpox: Discovery of small molecules as potential inhibitors against DNA‐dependent RNA polymerase using molecular modeling approach

Author:

Dutt Mansi1,Kumar Anuj12ORCID,Rout Madhusmita3,Dehury Budheswar3ORCID,Martinez Gustavo1,Ndishimye Pacifique1,Kelvin Alyson A.45,Kelvin David J.1

Affiliation:

1. Department of Microbiology and Immunology, Department of Paediatrics, IWK Health Center, Canadian Centre for Vaccinology (CCfV), Faculty of Medicine Dalhousie University Halifax Canada

2. European Virus Bioinformatics Center Jena Germany

3. Bioinformatics Division ICMR‐Regional Medical Research Centre Bhubaneswar Odisha India

4. Vaccine and Infectious Disease Organization (VIDO) University of Saskatchewan Saskatoon Saskatchewan Canada

5. Department of Biochemistry, Microbiology, and Immunology University of Saskatchewan Saskatoon Saskatchewan Canada

Abstract

AbstractMpox (formerly Monkeypox), a zoonotic illness caused by the Mpox virus, belongs to the Orthopoxvirus genus in the family Poxviridae. To design and develop effective antiviral therapeutics against DNA viruses, the DNA‐dependent RNA polymerase (DdRp) of poxviruses has emerged as a promising drug target. In the present study, we modeled the three‐dimensional (3D) structure of DdRp using a template‐based homology approach. After modeling, virtual screening was performed to probe the molecular interactions between 1755 Food and Drug Administration‐approved small molecule drugs (≤500 molecular weight) and the DdRp of Mpox. Based on the binding affinity and molecular interaction patterns, five drugs, lumacaftor (−11.7 kcal/mol), conivaptan (−11.7 kcal/mol), betulinic acid (−11.6 kcal/mol), fluspirilene (−11.3 kcal/mol), and imatinib (−11.2 kcal/mol), have been ranked as the top drug compounds interacting with Mpox DdRp. Complexes of these shortlisted drugs with DdRp were further evaluated using state‐of‐the‐art all‐atoms molecular dynamics (MD) simulations on 200 nanoseconds followed by principal component analysis (PCA). MD simulations and PCA results revealed highly stable interactions of these small drugs with DdRp. After due validation in wet‐lab using available in vitro and in vivo experiments, these repurposed drugs can be further utilized for the treatment of contagious Mpox virus. The outcome of this study may establish a solid foundation to screen repurposed and natural compounds as potential antiviral therapeutics against different highly pathogenic viruses.

Funder

Dalhousie Medical Research Foundation

Li Ka Shing Foundation

Canadian Institutes of Health Research

Publisher

Wiley

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3