Finite‐horizon optimal trajectory control of near space hypersonic vehicle with multi‐constraints

Author:

Xia Rongsheng1ORCID,Bu Chunlei1,Yan Xiaohui2,Zhou Tongle3

Affiliation:

1. College of Electrical and Information Engineering Anhui University of Technology Ma'anshan China

2. The College of Artificial Intelligence and Big Data Hefei University Hefei China

3. The College of Automation Engineering Nanjing University of Aeronautics and Astronautics Nanjing China

Abstract

AbstractIn this article, a finite‐horizon optimal trajectory control strategy is developed for near space hypersonic vehicle (NSHV) longitudinal model with multi‐constraints including external disturbance, system modeling error, and input saturation. The whole control process has two parts: inner‐loop attitude control and outer‐loop trajectory control. First, the feedback linearization method is applied to design a tracking controller for outer‐loop system, and reference signals for inner‐loop attitude control can be obtained using Newton iteration method. Second, for the inner‐loop attitude system with multi‐constraints, a finite‐horizon optimal tracking control scheme consists of feedforward control input and adaptive dynamic programming based optimal feedback controller is designed. In this way, not only the adverse effects of above multi‐constraints are eliminated, but also the optimally tracking performances are guaranteed. Finally, the Lyapunov analysis method is utilized to ensure the stability of the entire closed‐loop control system, and simulation tests with respect to NSHV longitudinal trajectory tracking are supplied to verify the availability of the proposed strategy.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Applied Mathematics,Control and Optimization,Software,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3