The missing piece: Effect of dangling chains on the synthesis and properties of bio‐based waterborne polyurethane

Author:

Wang Li12,Luo Haihang12,Gao Qiang12,Jiang Le12,Wang Zhenya12,Fan Haojun123ORCID,Chen Yi12,Yan Jun12,Xiang Jun12

Affiliation:

1. College of Biomass Science and Engineering Sichuan University Chengdu People's Republic of China

2. Key Laboratory of Leather Chemistry and Engineering (Sichuan University) Ministry of Education Chengdu People's Republic of China

3. State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu People's Republic of China

Abstract

AbstractBio‐based polyols derived from vegetable oils generally contain the dangling chains, which have recently attracted significant attention due to their influence on the preparation and performance of the waterborne polyurethane. Herein, a novel undecylenic‐based primary glycol (UPG) without dangling chains synthesized and the oleic‐based primary glycol (OPG) with dangling chains reported by our previous work were used to prepare straight‐chain and dangling‐chain bio‐based waterborne polyurethane (BWPU), respectively, to study the difference between the two diols and the effects of dangling chains on the synthesis and performance of BWPU. First, the UPG without dangling chains displayed higher activation energy (Ea/Eo = 77.72/80.56 kJ mol−1) and longer reaction end point of prepolymer (240 min), indicating relatively lower reactivity to isocyanate. In addition, the dangling chains were found to influence the dispersion stability of BWPU, and the minimum dosage of DMPA for maintaining dispersion stability was 6.5 wt% for OPG but 5.5 wt% for UPG. The average particle size of BWPU is greater for OPG than for UPG with the same DMPA content. Finally, performance studies revealed that dangling‐chain BWPU showed higher hydrophobicity, extensibility, and low temperature resistance, but lower thermal stability (Td5%) and tensile strength. This work comprehensively clarified the effects of linear and branched bio‐based polyols on the synthesis and properties of BWPU, and provided guidance for the development and application of bio‐based polyols and BWPU coatings.

Funder

Fundamental Research Funds for the Central Universities

National Key Research and Development Program of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3