Full‐field hygroscopic characterization of tough 3D‐printed supramolecular hydrogels

Author:

Vonk N. H.1,van Adrichem S. C. A.1,Wu D. J.23,Dankers P. Y. W.23,Hoefnagels J. P. M.1ORCID

Affiliation:

1. Department of Mechanical Engineering Eindhoven University of Technology Eindhoven The Netherlands

2. Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands

3. Laboratory of Chemical Biology, Department of Biomedical Engineering Eindhoven University of Technology Eindhoven The Netherlands

Abstract

AbstractChain‐extended ureido‐pyrimidinone poly(ethylene glycol) (CE‐UPy‐PEG) is a supramolecular hydrogel with excellent mechanical properties and shape memory capabilities, making it highly suitable for 3D printing of complex biomimetic structures to mimic biomaterials. However, its transient hygroexpansion response under environmental change, specifically relative humidity (RH), which is strongly affected by the supramolecular sub‐structure, is poorly understood. Therefore, a high‐precision full‐field fiber‐swelling methodology is applied to 3D‐printed CE‐UPy‐PEG fibers, enabling investigation of the influence of PEG chain length (1.5, 3, and 10 kg/mol studied here) and RH rate from wet to dry on the longitudinal and transverse surface strain evolution during multiple RH cycles. The PEG length directly influences the fibers' hygroscopic properties, because only CE‐UPy‐PEG3k and CE‐UPy‐PEG10k exhibit a phase transformation from semicrystalline to amorphous at higher RH levels, which is fully described by a phenomenological phase transformation model. Furthermore, all fibers display cyclic repeatability (shape memory), increased swelling for longer PEG chains and lower RH rate, and disappearance of sub‐millimeter‐sized tube‐like voids after wetting.

Funder

Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek

Topconsortium voor Kennis en Innovatie

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3