Effect of constrained annealing on the structural and dielectric properties of melt cast PVDF/PMMA films

Author:

Jain Mayank12ORCID,Mutlu Zeynep12ORCID,Mao Jiahao12ORCID,Zhou Jierui3,Wu Chao3,Cao Yang3ORCID,Cakmak Mukerrem124ORCID

Affiliation:

1. Birck Nanotechnology Center Purdue University West Lafayette Indiana USA

2. School of Materials Engineering Purdue University West Lafayette Indiana USA

3. School of Electrical and Computer Engineering University of Connecticut Storrs Connecticut USA

4. School of Mechanical Engineering Purdue University West Lafayette Indiana USA

Abstract

AbstractIn this study, the relationship between structural hierarchy in PVDF/PMMA blends as altered by melt casting and annealing and electrical properties was investigated. PVDF was blended with PMMA in three crystallizable compositions: 50/50, 60/40 and 70/30 of PVDF/PMMA using twin screw extrusion followed by film casting. The films were characterized structurally through offline birefringence measurements as well as WAXS, SAXS, IR Dichroism and DSC to understand the processing induced structural changes and their effect on electrical properties. The addition of PMMA to PVDF suppressed crystalization during casting of films. This opened a low temperature film deformation window between Tg and cold crystallization temperatures allowing for development of high preferential chain orientation in the films. Crystallinity in cast films was shown to correlate directly with breakdown strength. Systemic annealing experiments were carried out to enhance crystallinity and the effect of annealing induced structural changes on the dielectric properties were studied. It was found that upon annealing, the amorphous PMMA tends to undergo relaxation that is detrimental to the breakdown properties. As annealing progresses, the mismatch in the kinetics between crystallization/recrystallization and the amorphous relaxation causes density gradients within the bulk of the films and dictate the overall orientation levels in the films, as well as have implications on the dielectric properties.

Funder

Office of Naval Research

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3