Enabling robust environmental DNA assay design with “unikseq” for the identification of taxon‐specific regions within whole mitochondrial genomes

Author:

Allison Michael J.1,Warren René L.2,Lopez M. Louie1,Acharya‐Patel Neha1,Imbery Jacob J.1,Coombe Lauren2,Yang Cecilia L.2,Birol Inanc23,Helbing Caren C.1ORCID

Affiliation:

1. Department of Biochemistry & Microbiology University of Victoria Victoria British Columbia Canada

2. Canada's Michael Smith Genome Sciences Centre at BC Cancer Vancouver British Columbia Canada

3. Department of Pathology & Laboratory Medicine University of British Columbia Vancouver British Columbia Canada

Abstract

AbstractEnvironmental DNA (eDNA) is revolutionizing species monitoring in nature. At the heart of any eDNA approach is the reliance upon sufficient DNA sequence information to satisfy the demands of eDNA assay specificity and sensitivity. The most common source of this information has been restricted to short barcoding regions of the mitochondrial genome (mitogenome) and marker genes. The use of these limited regions for assay design has often resulted in substantial trade‐offs in assay performance. With increased accessibility of full mitogenome assemblies, the potential for designing more robust eDNA assays is considerably enhanced. However, this also poses a new challenge to effectively identify suitable regions for assay design using considerably larger sequences. We present unikseq, a utility that uses words of length k (k‐mers) to identify unique regions in a reference sequence relative to tolerated (ingroup) and not‐tolerated (outgroup or non‐target) sequence sets, quickly and with low memory that can yield highly specific assays. We illustrate its application within an assay development workflow through use‐case examples for the design and validation of four quantitative real‐time polymerase chain reaction (qPCR)‐based assays selective for American bullfrog (Rana [Lithobates] catesbeiana), Burbot (Lota lota), Lake trout (Salvelinus namaycush), and Quillback rockfish (Sebastes maliger). The chosen target species vary in range, habitat, and degree of relatedness to their sympatric species that, consequently, impact eDNA assay design difficulty. We demonstrate the effectiveness of unikseq through assay validation and characterization using DNA from voucher specimens, synthetic DNA, and, where possible, field samples, to verify the specificity and sensitivity of the newly designed assays. By facilitating whole mitogenome sequence comparison, the creation of high‐performing eDNA assays is substantially enhanced. Having several adjustable parameters for specifying user requirements within unikseq, this approach can facilitate the identification of suitable regions for a broad range of applications requiring nucleotide sequence comparisons.

Funder

Genome British Columbia

Genome Canada

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Genetics,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3