Endothelial Progenitor Cells Homing and Renal Repair in Experimental Renovascular Disease

Author:

Chade Alejandro R.1,Zhu Xiang-Yang1,Krier James D.1,Jordan Kyra L.1,Textor Stephen C.1,Grande Joseph P.2,Lerman Amir2,Lerman Lilach O.13

Affiliation:

1. Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA

2. Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA

3. Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA

Abstract

Abstract Tissue injury triggers reparative processes that often involve endothelial progenitor cells (EPCs) recruitment. We hypothesized that atherosclerotic renal artery stenosis (ARAS) activates homing signals that would be detectable in both the kidney and EPCs, and attenuated on renal repair using selective cell-based therapy. Pigs were treated with intrarenal autologous EPC after 6 weeks of ARAS. Four weeks later, expression of homing-related signals in EPC and kidney, single kidney function, microvascular (MV) density, and morphology were compared with untreated ARAS and normal control pigs (n = 7 each). Compared with normal EPC, EPC from ARAS pigs showed increased stromal cell-derived factor (SDF)-1, angiopoietin-1, Tie-2, and c-kit expression, but downregulation of erythropoietin (EPO) and its receptor. The ARAS kidney released the c-kit-ligand stem cell factor, uric acid, and EPO, and upregulated integrin β2, suggesting activation of corresponding homing signaling. However, angiopoietin-1 and SDF-1/CXCR4 were not elevated. Administration of EPC into the stenotic kidney restored angiogenic activity, improved MV density, renal hemodynamics and function, decreased fibrosis and oxidative stress, and attenuated endogenous injury signals. The ARAS kidney releases specific homing signals corresponding to cognate receptors expressed by EPC. EPC show plasticity for organ-specific recruitment strategies, which are upregulated in early atherosclerosis. EPC are renoprotective as they attenuated renal dysfunction and damage in chronic ARAS, and consequently decreased the injury signals. Importantly, manipulation of homing signals may potentially allow therapeutic opportunities to increase endogenous EPC recruitment.

Funder

NIH

American Heart Association Scientist Development

Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3