Ontogenetic changes in southern sea otter (Enhydra lutris nereis) fur morphology

Author:

Riordan Kate1ORCID,Dean Annika E.1,Adema Payton1,Thometz Nicole M.2,Batac Francesca I.3,Liwanag Heather E. M.1

Affiliation:

1. Department of Biological Sciences California Polytechnic State University San Luis Obispo San Luis Obispo California USA

2. Department of Biology University of San Francisco San Francisco California USA

3. California Department of Fish and Wildlife Marine Wildlife Veterinary Care and Research Center Santa Cruz California USA

Abstract

AbstractMany animals exhibit morphological changes across ontogeny associated with adaptations to their environment. Sea otters (Enhydra lutris) have the densest fur of any animal, which is composed of guard hairs, intermediate hairs, and underhairs. Sea otters live in cold water environments, and their fur traps a layer of air to remain properly insulated, due to morphological adaptations that allow the hairs to trap air when submerged. When a sea otter is born, it has a natal pelage which it will eventually molt and replace with a pelt resembling the adult pelage. Past studies have investigated the morphology and hair density of adult sea otter fur, but these characteristics have not been measured for other age classes, including for the natal pelage. This study quantified ontogenetic changes in hair morphology of southern sea otter (E. lutris nereis) pelts. We measured guard hair length and circularity, shape of cuticular scales on guard hairs and underhairs, and overall hair density for sea otter pelts across six age classes: neonate (<1 month), small pup (1–2 months), large pup (3–5 months), juvenile (6 months–1 year), subadult (1–3 years), and adult (4–9 years). Neonate and small pup pelts had significantly longer guard hairs than older age classes. Natal pelage guard hairs were similarly shaped but smaller in diameter than adult guard hairs. Hairs of the natal pelage had similar cuticular scale patterns as adult hairs, indicating the importance of this structure for the function of the fur. Natal pelage had a lower hair density than the pelage of older age classes, with the adult pelage exhibiting the highest hair density. Overall, the morphological differences between natal and adult pelage in sea otters suggest functional differences that may make sea otter pups more vulnerable to heat loss.

Funder

Council on Ocean Affairs Science and Technology, California State University

Publisher

Wiley

Subject

Developmental Biology,Animal Science and Zoology

Reference34 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3