Morphological variation in the vomer of aquatic and terrestrial spelerpini salamanders

Author:

Darcy Hannah E.1ORCID,Anderson Philip S. L.1ORCID

Affiliation:

1. Department of Evolution, Ecology, and Behavior University of Illinois Urbana‐Champaign Champaign Illinois USA

Abstract

AbstractThe vomer is an important tooth‐bearing cranial bone in the lungless salamanders (Caudata: Plethodontidae) that serves different functional roles in aquatic versus terrestrial feeding. Vomerine tooth rows that run parallel with the maxillary teeth are thought to help grasp prey while expelling water from the mouth, while posterior extensions of the tooth row may help terrestrial taxa bring prey down the throat. We hypothesize that these two general morphological types will correlate with the habitat (aquatic vs. terrestrial) of adult salamanders. Alternatively, variation in form may be due to taxonomic effects, such that closely related species will have similar vomer morphology regardless of adult habitat. To test this hypothesis, we examined vomer shape on a set of species of the morphologically diverse tribe Spelerpini, in which two of the five genera (Eurycea and Gyrinophilus) include both aquatic and terrestrial species. Data were collected using micro computed tomography (micro‐CT) scans from specimens from the Field Museum of Natural History and the Illinois Natural History Survey; additional data was obtained from public online repositories including Morphosource.org. Two‐dimensional geometric morphometric analyses were performed to capture shape variation of both the vomer and the vomerine tooth row. We found clear separation between aquatic and terrestrial taxa, with most of the variation due to differences in the vomerine tooth row. Differences ascribed to habitat use likely correspond to feeding behavior, and the functional role of the vomer in prey processing warrants further investigation in this species‐rich salamander family.

Funder

University of Illinois at Urbana-Champaign

Publisher

Wiley

Subject

Developmental Biology,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3