Affiliation:
1. Center for Functional Anatomy and Evolution Johns Hopkins University School of Medicine Baltimore Maryland USA
2. Department of Psychological and Brain Sciences Johns Hopkins University Baltimore Maryland USA
3. Department of Anatomy New York Institute of Technology College of Osteopathic Medicine Old Westbury New York USA
4. Division of Paleontology American Museum of Natural History New York City New York USA
5. Life Sciences Department Natural History Museum London UK
Abstract
AbstractThe avian head is unique among living reptiles in its combination of relatively large brain and eyes, coupled with relatively small adductor jaw muscles. These derived proportions lend themselves to a trade‐off hypothesis, wherein adductor size was reduced over evolutionary time as a means (or as a consequence) of neurosensory expansion. In this study, we examine this evolutionary hypothesis through the lens of development by describing the jaw‐adductor anatomy of developing chickens, Gallus gallus, and comparing the volumetric expansion of these developing muscles with growth trajectories of the brain and eye. Under the trade‐off hypothesis, we predicted that the jaw muscles would grow with negative allometry relative to brain and eyes, and that osteological signatures of a relatively large adductor system, as found in most nonavian dinosaurs, would be differentially expressed in younger chicks. Results did not meet these expectations, at least not generally, with muscle growth exhibiting positive allometry relative to that of brain and eye. We propose three, nonmutually exclusive explanations: (1) these systems do not compete for space, (2) these systems competed for space in the evolutionary past, and growth of the jaw muscles was truncated early in development (paedomorphosis), and (3) trade‐offs in developmental investment in these systems are limited temporally to the perinatal period. These explanations are considered in light of the fossil record, and most notably the skull of the stem bird Ichthyornis, which exhibits an interesting combination of plesiomorphically large adductor chamber and apomorphically large brain.
Funder
National Science Foundation
Subject
Developmental Biology,Animal Science and Zoology