Plasmodium structure of Intoshia linei (Orthonectida)

Author:

Skalon Elizaveta K.1ORCID,Starunov Viktor V.1ORCID,Bondarenko Natalya I.1ORCID,Slyusarev George S.1ORCID

Affiliation:

1. Department of Invertebrate Zoology, Faculty of Biology St. Petersburg University St. Petersburg Russia

Abstract

AbstractOrthonectids are enigmatic parasitic bilaterians whose exact position on the phylogenetic tree is still uncertain. Despite ongoing debate about their phylogenetic position, the parasitic stage of orthonectids known as “plasmodium” remains underexplored. There is still no consensus on the origin of the plasmodium: whether it is an altered host cell or a parasitic organism that develops in the host extracellular environment. To determine the origin of the orthonectid parasitic stage, we studied in detail the fine structure of the Intoshia linei orthonectid plasmodium using a variety of morphological methods. The orthonectid plasmodium is a shapeless multinucleated organism separated from host tissues by a double membrane envelope. Besides numerous nuclei, its cytoplasm contains organelles typical for other bilaterians, reproductive cells, and maturing sexual specimens. Reproductive cells, as well as developing orthonectid males and females, are covered by an additional membrane. The plasmodium forms protrusions directed to the surface of the host body and used by mature individuals for egress from the host. The obtained results indicate that the orthonectid plasmodium is an extracellular parasite. A possible mechanism for its formation might involve spreading parasitic larva cells across the host tissues with subsequent generation of a cell‐within‐cell complex. The cytoplasm of the plasmodium originates from the outer cell, which undergoes multiple nuclear divisions without cytokinesis, while the inner cell divides, giving rise to reproductive cells and embryos. The term “plasmodium” should be avoided and the term “orthonectid plasmodium” could be temporarily used instead.

Funder

Russian Science Foundation

Publisher

Wiley

Subject

Developmental Biology,Animal Science and Zoology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3