Impact of sample size and regression of tissue‐specific signals on effective connectivity within the core default mode network

Author:

Silchenko Alexander N.1ORCID,Hoffstaedter Felix12ORCID,Eickhoff Simon B.12ORCID

Affiliation:

1. Institute of Neuroscience and Medicine, Brain & Behaviour (INM‐7) Research Center Jülich Jülich Germany

2. Institute of Systems Neuroscience, Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany

Abstract

AbstractInteractions within brain networks are inherently directional, which are inaccessible to classical functional connectivity estimates from resting‐state functional magnetic resonance imaging (fMRI) but can be detected using spectral dynamic causal modeling (DCM). The sample size and unavoidable presence of nuisance signals during fMRI measurement are the two important factors influencing the stability of group estimates of connectivity parameters. However, most recent studies exploring effective connectivity (EC) have been conducted with small sample sizes and minimally pre‐processed datasets. We explore the impact of these two factors by analyzing clean resting‐state fMRI data from 330 unrelated subjects from the Human Connectome Project database. We demonstrate that both the stability of the model selection procedures and the inference of connectivity parameters are highly dependent on the sample size. The minimum sample size required for stable DCM is approximately 50, which may explain the variability of the DCM results reported so far. We reveal a stable pattern of EC within the core default mode network computed for large sample sizes and demonstrate that the use of subject‐specific thresholded whole‐brain masks for tissue‐specific signals regression enhances the detection of weak connections.

Funder

Horizon 2020 Framework Programme

California Department of Fish and Game

Publisher

Wiley

Subject

Neurology (clinical),Neurology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3