An efficient hybrid strategy for uplink channel estimation in massive MIMO systems based on spatially correlated channels

Author:

Amadid Jamal1ORCID,Zeroual Abdelouhab1ORCID

Affiliation:

1. Instrumentation, Signals and Physical Systems (I2SP) Group, Faculty of Sciences Semlalia Cadi Ayyad University Marrakesh Morocco

Abstract

SummaryThe channel estimation (CE) process is an important phase that has a considerable influence on the performance of massive multiple‐input multiple‐output systems, in particular, in a more realistic scenario where the channels are spatially correlated (ScD). Thereby, in this work, the uplink (UL) CE process and channel hardening (CH) feature is addressed for ScD Rayleigh fading channels using the statistical Bayesian minimum mean square error estimator. The spatial correlation (SC) of the channels is described using different models, namely, the Gaussian local scattering (GLS) model, the uniform local scattering model, and the proposed hybrid model. Each model (i.e., GLS model and the uniform local scattering model) is studied using two arrangements, that is, for a uniform linear array (ULA) and uniform planar array (UPA). Moreover, the CH feature is investigated under SC of the channels using different models. Furthermore, this study proposes an efficient hybrid strategy based on SC of the channels for UL CE; that is, this work proposes a hybrid covariance matrix (CM) for UPA arrangement by relying on the Kronecker product of the CMs generated through two ULA arrangements, where the first CM is generated through horizontal ULA using GLS model, whereas the second CM is generated through vertical ULA using uniform local scattering model (i.e., one‐ring model). Numerical results regarding CE and CH are provided to assert the theoretical expressions, where the CE is evaluated using the normalized mean square error, whereas the CH is assessed using the variance of CH.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computer Networks and Communications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spatially Correlated Channels Investigation: Estimation and Hardening in Millimeter-Wave Massive MIMO Systems;Signals and Communication Technology;2024

2. Channel Gain in Micro-urban Environment Assisted Intelligent Reflecting Surface;2023 IEEE 3rd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA);2023-05-21

3. The Influence of phase-shifted Line-of-sight component with correlated-shadows Rician fading over the performance of Cell-Free Massive MIMO;2023 IEEE 3rd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA);2023-05-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3